Wearable Energy Generator Uses Urine to Power Wireless Transmitter
December 14, 2015 | University of the West of EnglandEstimated reading time: 2 minutes
A pair of socks embedded with miniaturised microbial fuel cells (MFCs) and fuelled with urine pumped by the wearer's footsteps has powered a wireless transmitter to send a signal to a PC. This is the first self-sufficient system powered by a wearable energy generator based on microbial fuel cell technology.
The scientific paper, 'Self-sufficient Wireless Transmitter Powered by Foot-pumped Urine Operating Wearable MFC' is published in Bioinspiration and Biomimetics.
The paper describes a lab-based experiment led by Professor Ioannis Ieropoulos, of the Bristol BioEnergy Centre at the University of the West of England (UWE Bristol). The Bristol BioEnergy Centre is based in Bristol Robotics Laboratory, a collaborative partnership between the University of the West of England (UWE Bristol) and the University of Bristol.
Soft MFCs embedded within a pair of socks was supplied with fresh urine, circulated by the human operator walking. Normally, continuous-flow MFCs would rely on a mains powered pump to circulate the urine over the microbial fuel cells, but this experiment relied solely on human activity. The manual pump was based on a simple fish circulatory system and the action of walking caused the urine to pass over the MFCs and generate energy. Soft tubes, placed under the heels, ensured frequent fluid push–pull by walking. The wearable MFC system successfully ran a wireless transmission board, which was able to send a message every two minutes to the PC-controlled receiver module.
Professor Ieropoulos says, “Having already powered a mobile phone with MFCs using urine as fuel, we wanted to see if we could replicate this success in wearable technology. We also wanted the system to be entirely self-sufficient, running only on human power – using urine as fuel and the action of the foot as the pump.”
“This work opens up possibilities of using waste for powering portable and wearable electronics. For example, recent research shows it should be possible to develop a system based on wearable MFC technology to transmit a person's coordinates in an emergency situation. At the same time this would indicate proof of life since the device will only work if the operator's urine fuels the MFCs.”
Microbial fuel cells (MFCs) use bacteria to generate electricity from waste fluids. They tap into the biochemical energy used for microbial growth and convert it directly into electricity. This technology can use any form of organic waste and turn it into useful energy without relying on fossil fuels, making this a valuable green technology.
The Centre has recently launched a prototype urinal in partnership with Oxfam that uses pee-power technology to light cubicles in refugee camps.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium Corporation Earns Mexico Technology Award for New Halogen-Free Flux-Cored Wire
09/18/2025 | Indium CorporationIndium Corporation recently earned a Mexico Technology Award for its new high-reliability, halide- and halogen-free flux-cored wire, CW-807RS, which improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
Blaize, Technology Control Company Partner to Power Saudi Arabia’s Next-Generation AI Innovation Infrastructure
09/17/2025 | BUSINESS WIREBlaize Holdings, Inc., a leader in programmable, energy-efficient edge AI computing, and Technology Control Company (TCC), a leading technology solutions provider in the Kingdom of Saudi Arabia (KSA), announced a strategic partnership to advance Saudi Arabia’s AI innovation infrastructure and accelerate its digital transformation goals.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
On the Line With… Podcast: UHDI and RF Performance
09/17/2025 | I-Connect007I-Connect007 is excited to announce the release of a new episode in its latest On the Line with... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).