Scientists Teach Machines How to Learn Like Humans
December 15, 2015 | New York UniversityEstimated reading time: 4 minutes
A team of scientists has developed an algorithm that captures our learning abilities, enabling computers to recognize and draw simple visual concepts that are mostly indistinguishable from those created by humans. The work, which appears in the latest issue of the journal Science, marks a significant advance in the field—one that dramatically shortens the time it takes computers to “learn” new concepts and broadens their application to more creative tasks.
“Our results show that by reverse engineering how people think about a problem, we can develop better algorithms,” explains Brenden Lake, a Moore-Sloan Data Science Fellow at New York University and the paper’s lead author. “Moreover, this work points to promising methods to narrow the gap for other machine learning tasks.”
The paper’s other authors were Ruslan Salakhutdinov, an assistant professor of Computer Science at the University of Toronto, and Joshua Tenenbaum, a professor at MIT in the Department of Brain and Cognitive Sciences and the Center for Brains, Minds and Machines.
When humans are exposed to a new concept—such as new piece of kitchen equipment, a new dance move, or a new letter in an unfamiliar alphabet—they often need only a few examples to understand its make-up and recognize new instances. While machines can now replicate some pattern-recognition tasks previously done only by humans—ATMs reading the numbers written on a check, for instance—machines typically need to be given hundreds or thousands of examples to perform with similar accuracy.
“It has been very difficult to build machines that require as little data as humans when learning a new concept,” observes Salakhutdinov. “Replicating these abilities is an exciting area of research connecting machine learning, statistics, computer vision, and cognitive science.”
Salakhutdinov helped to launch recent interest in learning with “deep neural networks,” in a paper published in Science almost 10 years ago with his doctoral advisor Geoffrey Hinton. Their algorithm learned the structure of 10 handwritten character concepts—the digits 0-9—from 6,000 examples each, or a total of 60,000 training examples.
Page 1 of 2
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
INEMI Smart Manufacturing Tech Topic Series: Enhancing Yield and Quality with Explainable AI
05/02/2025 | iNEMIIn semiconductor manufacturing, the ability to analyze vast amounts of high-dimensional data is critical for ensuring product quality and optimizing wafer yield.
Manncorp Launches Industry-First 'Build Your Own SMT Line' Tool
05/02/2025 | ManncorpManncorp, a leading supplier of SMT (Surface Mount Technology) equipment, proudly announces the official launch of its “Build Your Own SMT Line” tool – a first-of-its-kind resource in the electronics manufacturing industry. Introduced just one month ago, this revolutionary online feature gives manufacturers the unprecedented ability to design a complete SMT production line tailored to their exact needs – all from their desktop.
Driving Innovation: Registration in PCB Production Throughout the Process
05/05/2025 | Simon Khesin -- Column: Driving InnovationPCB manufacturing is a fascinating industry where multiple disciplines—chemical, mechanical, and optical processes—intersect. Each field plays a crucial role, and missing even one step can significantly impact production and yield. In the realm of mechanical and optical processes, one of the most critical aspects influencing the final result—especially in complex PCB designs—is registration.
Machine Vision: MVTec Expands Deep Learning Portfolio with New Versions of its Deep Learning Tool
04/29/2025 | MVTec Software GmbHThe machine vision industry is gaining significant momentum by using deep learning, a subset of artificial intelligence, which allows for the automation of entirely new applications and improved results.