A New Metamaterial will Speed Up Computers
December 29, 2015 | Moscow Institute of Physics and TechnologyEstimated reading time: 4 minutes
This idea underlies the recent work by the group of scientists from the Moscow Institute of Physics and Technology and the Landau Institute for Theoretical Physics. The unit cell of the proposed lattice is composed of a pair of closely spaced silver cylinders with a radius of the order of 100 nanometres (see figure). Such a structure is simple and operates at optical wavelengths, while most analogues have more complex geometries and only work with microwaves.
The effective interaction of pairs of metal cylinders with light is due to the plasmon resonance effect. Light is absorbed by the metal rods, forcing the electrons in the metal to oscillate and re-radiate. Researchers were able to adjust the parameters of the cell so that the resulting optical lattice response is consistent with abnormal (i.e. negative) refraction of the incident wave (see figure). Interestingly, by reversing the orientation of the cylinder pairs you can get an abnormal reflection effect. It should be noted that the scheme works with a wide range of angles of incidence.
The results achieved can be applied to control optical signals in ultra-compact devices. In this case we are talking primarily about optical transmission and information processing technologies, which will help expedite computer processing in the future. The conventional electrical interconnects used in modern chips are operating at the limit of their carrying capacities and inhibit further growth in computing performance. To replace the electrical interconnects by optical we need to be able to effectively control optical signals at nanoscale. In order to solve this problem the efforts of the scientific community are focused to a large extent on creating structures capable of 'turning' the light in the desired direction. It should be noted that an experimental demonstration of anomalous scattering using the lattice described above requires the manufacture of smooth metal cylinders separated by a very small distance (less than 10 nanometres). This is quite a difficult practical problem, the solution of which could be a breakthrough for modern photonics.
Page 2 of 2Suggested Items
Indium to Showcase Innovative Materials Powering AI Technology at Productronica China
03/25/2025 | Indium CorporationAs a proven leader in Metal-Based Thermal Interface materials solutions for future-forward technologies, Indium Corporation will proudly showcase its portfolio of thermal interface materials (TIMs) that enabling AI advancements at Productronica China, March 26-28, in Shanghai, China.
Electroninks' MOD and iSAP Game Changers
03/25/2025 | Marcy LaRont, PCB007 MagazineElectroninks, a prominent player in particle-free conductive inks, recently announced an exciting new range of metal-complex inks for ultra high density interconnect (UHDI) technology. At the SMTA UHDI Symposium in January, Mike Vinson, COO of Electroninks, gave a presentation on this line of MOD inks, which are versatile and suitable for a range of applications that require ultra-dense, miniaturized, and high-frequency technology. Mike says his technology is a game changer and will revolutionize UHDI circuit fabrication.
Curtiss-Wright Wins Rheinmetall Contracts for Vehicle Stabilization Systems
03/25/2025 | Curtiss-Wright CorporationCurtiss-Wright Corporation announced that it has been awarded multiple contracts to provide its turret drive aiming and stabilization technology to Rheinmetall for use on the German Army's Boxer Heavy Weapon Carrier and the Hungarian Ministry of Defence (MoD’s) Lynx infantry fighting vehicles (IFV).
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.
Rheinmetall Begins MASS Assembly in Australia to Support Royal Australian Navy
03/10/2025 | RheinmetallRheinmetall Defence Australia has begun assembling the first Multi Ammunition Soft Kill System (MASS) ship protection systems in Australia for installation on Royal Australian Navy ships.