Happy’s Essential Skills: The Need for Total Quality Control (Six Sigma and Statistical Tools): Part 1
January 13, 2016 | Happy HoldenEstimated reading time: 11 minutes
In this first of many columns covering my "Twenty-Five Essential Skills Every Engineer Needs to Learn," I will expand on each of those skills. To read the introduction to this series, which published in the January issue of The PCB Magazine, click here. As a quick recap, here are the 25 skills that I will be writing about over the next 18 months or so, to publish every three weeks or so in the PCB007 Daily Newsletter (if you are not yet a subscriber, click here to have the newsletter delivered to your inbox for free):
1. TQC/six sigma/statistics/curve fitting
2. Problem solving
3. Design of experiments
4. FMEA
5. Information research on the Internet
6. Technical writing
7. Product/process life cycles
8. Learning curve/learning theory
9. Figure of merit/shared vision
10. Design for manufacturing/assembly
11. Managing management time
12. Project/program management
13. Benchmarking
14. Engineering economics/ROI/BET
15. Roadmapping
16. Quality functional deployment (House of Quality)
17. Automation strategy/CIM
18. Computer aided manufacturing
19. Recruiting and interviewing
20. METRICS—dimensional analysis
21. 10-Step business plan
22. Programmed instruction/long distance learning
23. Lean manufacturing/JIT/TOC
24. Technology awareness
25. Predictive engineering
Let's get started. The first topic is one of the most important: Total Quality Control (including six sigma, and statistical tools).
Total Quality Control (TQC)
Total Quality Control is the philosophy of continuous process improvement through statistical techniques and a commitment to excellence. TQC are systems for optimizing production based on ideas developed by Japanese industries since the 1950s. This term has evolved into Total Quality Management (TQM) and Six Sigma (6σ). The system, which blends Western and Eastern ideas, began with the concept of quality circles, in which groups of 10–20 workers were given responsibility for the quality of the products they produced. It gradually evolved into various techniques involving both workers and managers to maximize productivity and quality, including close monitoring of staff and excellent customer service.
The concept of kaizen—the notion that improvement must involve all members of a company—is central to TQC. It aims to radically transform the organization through progressive changes in the attitudes, practices, structures, and systems.
Figure 1: Key links between quality, productivity and customer satisfaction.
Total quality control transcends the product quality approach, involves everyone in the organization, and encompasses its every function: administration, communications, distribution, manufacturing, marketing, planning, and training.
TQC views an organization as a collection of processes. It maintains that organizations must strive to improve continuously these processes by incorporating the knowledge and experiences of workers. The simple objective of TQC is "Do the right things, right the first time, every time." True improvements in quality of products and services have multiple positive effects on an organization, as shown in Figure 1: lower costs, lower prices, and increased customer satisfaction. Although originally applied to manufacturing operations, and for a number of years only used in that area, TQC is now becoming recognized as a generic management tool, just as applicable in service and public sector organizations. There are a number of evolutionary offshoots, like Six-Sigma, with different sectors creating their own versions from the common ancestor. TQC is the foundation for activities that include:
• Commitment to leadership by senior management and empowerment of all employees, from the top down
• Meeting of customer requirements
• Reduction of development cycle times
• Just in Time/demand flow manufacturing
• Improvement teams
• Reduction of product and service costs
• Systems to facilitate improvement
• Line management ownership
• Employee involvement and empowerment
• Recognition and celebration
• Challenging quantified goals and benchmarking
• Focus on processes/improvement plans
• Specific incorporation in strategic planning
This shows that TQC must be practiced in all activities, by all personnel, in manufacturing, marketing, engineering, R&D, sales, purchasing, and HR, etc.[1].
Page 1 of 4
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.
Unlocking the Promise of AI in Electronics Manufacturing
10/29/2025 | Shobhit Agrawal, Keysight TechnologiesThe electronics manufacturing industry is rapidly evolving as more complicated products are introduced in the production lines, which require technological advancements even in the production processes. The requirements for production that is efficient, product quality that is greater, and product life cycles that are shorter are more crucial than ever before. In the electronic device life cycle, from design to maintenance, test phases have a significant impact on the economy of the company. Test processes are closely linked to the production volume and impacted by the complexity of the product. For businesses to maintain their competitive edge, they need to adopt innovative solutions and redefine processes.
Connect the Dots: Designing for the Reality of UHDI PCBs—Drilling
11/04/2025 | Matt Stevenson -- Column: Connect the DotsUltra high density interconnect (UHDI) PCBs are changing the game in designing for the reality of manufacturing. With both consumer and industrial electronic devices becoming more advanced, the demand for UHDI PCBs will grow. That means we’re all likely to be designing more UHDI boards. UHDI advanced miniaturization technology challenges designers with regard to both board thickness and footprint. Designers will face more variables in every aspect of design creation. This is certainly the case with drilling.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.