X-rays Reveal Details of Plastic Solar Cell Production
January 13, 2016 | TECHNICAL UNIVERSITY OF MUNICH (TUM)Estimated reading time: 3 minutes
Working in cooperation with the Lawrence Berkeley National Laboratory in the USA, Stephan Pröller, doctoral candidate at MSE, used X-rays to make the molecules and their processes visible during the printing of a plastic film. He identified different phases that unfold during the drying of the film.
Initially the solvent evaporates while the other materials stay in solution. This leads to an increase in the concentration of the plastic molecules in the wet film until the electron donor starts crystallizing. At the same time the electron acceptor starts to form aggregates. A fast crystallization process follows, pushing the aggregates of the electron acceptor closer together. At this stage the distance between the interfaces of the two materials is defined, which is closely related to efficiency. To systematically improve the solar cells, this step in the printing process needs to be controlled.
In the last stage optimizing processes within the individual materials are taking place, like the optimization of the packing of the crystals.
"The production speed also plays an important role," explains Pröller. Although this pattern is preserved with faster drying processes, the aggregates and crystals formed by the materials influence the remainder of the structure formation so that slower structure formation has a more positive impact on the final efficiency.
The researchers would now like to use their insights into the processes to gain specific control over the arrangement of the materials using other parameters. These results could then be transferred to industrial production and help to optimize it.
Page 2 of 2Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.