A Different Way to Make a Cathode May Mean Better Batteries
January 13, 2016 | Lawrence Berkeley National LaboratoryEstimated reading time: 4 minutes
The cathode is the positive electrode in a battery, and development of an improved cathode material is considered essential to achieving a stable high-voltage cell, the subject of intense research. Spray pyrolysis is a commercially available technique used for making thin films and powders but has not been widely used to make materials for battery production.
The surface reactivity is a particular problem for high-voltage cycling, which is necessary to achieve higher capacities needed for high-energy devices. The phenomenon has been studied and various strategies have been tried to ameliorate the issue over the years, including using partial titanium substitution for cobalt, which counteracts the reactivity of the surfaces to some extent.
At SSRL researchers Dennis Nordlund and Yijin Liu used x-ray transmission microscopy and spectroscopy to examine the material in the tens of nanometers to 10-30 micron range. At CFN researcher Huolin Xin used a technique called electron energy loss spectroscopy (EELS) with a scanning transmission electron microscope (STEM), which was able to zoom in on details down to the nanoscale.
At these two scales, Doeff and her Berkeley Lab colleagues—Feng Lin, Yuyi Li, Matthew Quan, and Lei Cheng—working with the scientists at SSRL and CFN made some important findings about the material.
Lin, a former Berkeley Lab postdoctoral researcher working with Doeff and first author on the paper, said: “Our previous studies revealed that engineering the surface of cathode particles could be the key to stabilizing battery performance. After some deep effort to understand the stability challenges of NMC cathodes, we are now getting one step closer to improving NMC cathodes by tuning surface metal distribution.”
The research results point the way to further refinements. “This research suggests a path forward to getting these materials to cycle with higher capacities—that is to design materials that are graded, with less nickel on the surface,” Doeff said. “I think our next step will be to try to make these materials with a larger compositional gradient and combine some other things to make them work together, such as titanium substitution, so we can utilize more capacity and thereby increase the energy density in a lithium ion battery.”
Page 2 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.