Since the 1960s, computer chips have been built using a process called photolithography. But in the past five years, chip features have gotten smaller than the wavelength of light, which has required some ingenious modifications of photolithographic processes. Keeping up the rate of circuit miniaturization that we’ve come to expect — as predicted by Moore’s Law — will eventually require new manufacturing techniques.
Block copolymers, molecules that spontaneously self-assemble into useful shapes, are one promising alternative to photolithography. In a new paper in the journal Nature Communications, MIT researchers describe the first technique for stacking layers of block-copolymer wires such that the wires in one layer naturally orient themselves perpendicularly to those in the layer below.
The ability to easily produce such “mesh structures” could make self-assembly a much more practical way to manufacture memory, optical chips, and even future generations of computer processors.
“There is previous work on fabricating a mesh structure — for example our work,” says Amir Tavakkoli, a postdoc in MIT’s Research Laboratory of Electronics and one of three first authors on the new paper. “We used posts that we had fabricated by electron-beam lithography, which is time consuming. But here, we don’t use the electron-beam lithography. We use the first layer of block copolymer as a template to self-assemble another layer of block copolymer on top of it.”
Tavakkoli’s co-first-authors on the paper are Sam Nicaise, a graduate student in electrical engineering, and Karim Gadelrab, a graduate student in materials science and engineering. The senior authors are Alfredo Alexander-Katz, the Walter Henry Gale Associate Professor of Materials Science and Engineering; Caroline Ross, the Toyota Professor of Materials Science and Engineering; and Karl Berggren, a professor of electrical engineering.
Page 1 of 3
Suggested Items
SolderKing to Highlight Innovations in Soldering and Manufacturing Efficiency at Southern Manufacturing & Electronics 2025
01/08/2025 | SolderKing Assembly Materials Ltd,SolderKing, a leading UK manufacturer of advanced soldering materials and consumables, will be exhibiting at the Southern Manufacturing and Electronics Show from 4-6 February 2025 at the Farnborough International Exhibition Centre, Stand J90.
SMTA Announces Wafer-Level Packaging Symposium Program
01/08/2025 | SMTAThe SMTA is excited to announce the technical program for the 2025 Wafer-Level Packaging Symposium. The symposium will be held February 18-20, 2025 at The Hyatt Regency San Francisco Airport in San Francisco, California.
MANA Develops Ferroelectric-ferromagnetic Materials for Next-generation Electronics
01/07/2025 | PRNewswireResearchers at the Research Center for Materials Nanoarchitectonics (MANA) have proposed a method to create ferroelectric-ferromagnetic materials, opening doors to advancing spintronics and memory devices.
BOOK EXCERPT: The Printed Circuit Assembler's Guide to... Encapsulating Sustainability for Electronics, Chapter 4
12/31/2024 | I-Connect007Bio-based encapsulation resins have the potential to contribute to sustainability targets by extending product lifetime and improving performance. The author explores the use of recycled materials such as biogenic waste and lightweight expandable polymers to create more efficient and environmentally friendly encapsulation resins.
AGC Multi Material to Showcase Substrate Materials at DesignCon 2025
12/31/2024 | AGC Multi Material AmericaAGC Multi Material America (AMMA) is participating in the DesignCon exhibition in Santa Clara, California, Jan. 28-30, 2025.