NASA Goes Green
February 5, 2016 | NASAEstimated reading time: 3 minutes
A NASA team has successfully demonstrated the handling and loading of a new-fangled, Swedish-developed “green propellant” that smells like glass cleaner, looks like chardonnay, but has proven powerful enough to propel a satellite.
As part of an international agreement with the Swedish National Space Board (SNSB), the team simulated a flight-vehicle loading operation with LMP-103S Green Propellant at Wallops Flight Facility on Virginia’s Eastern Shore. The team demonstrated the proper storage and then loading of the propellant into a flight-like tank provided by the New York-based Moog Inc., an aerospace company interested in green-propulsion technology.
This was the first-ever demonstration of its type on a U.S. range, said Henry Mulkey, an engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who led the effort.
The demonstration, which took place late in 2015, will be followed this year by two other tests. Goddard’s Propulsion Branch is carrying out a fracture test to determine the behavior of a flight tank should it crack while loaded with the propellant. And at the end of 2016, the branch also plans to test fire two Swedish-developed spacecraft thrusters powered by LMP-103S, said Caitlin Bacha, associate head of the center’s Propulsion Branch.
All tests are designed to show that LMP-103S is a viable, higher-performing, safer, and less-expensive alternative to hydrazine, a highly toxic propellant that requires personnel to don cumbersome, full-body protective gear when handling and loading the propellant into spacecraft. By way of comparison, Mulkey said he mixed LMP-103S wearing just safety glasses and a smock.
The propellant, which a Stockholm-based company, ECAPS AB, began developing about two decades ago with SNSB funding, is based on ammonium dinitramide, a high-energy salt. It made its debut about five years ago aboard PRISMA, a Swedish spacecraft equipped with two one-Newton thrusters. (A Newton is a unit of force.)
Over the years, 70 LMP-103S-powered thrusters have been built and used in different applications. NASA’s Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission also is investigating the use of LMP-103S-powered thrusters.
“We gained a lot of knowledge and hands-on experience from this pathfinder activity,” Mulkey said. “We can take this experience and directly apply it to other flight-loading activities.”
The Other ‘Green’ Propellant
Goddard’s experimentation with LMP-103S is just part of NASA’s green propellant story.
Goddard, as well as a handful of other NASA centers, also is participating in the Green Propellant Infusion Mission (GPIM). GPIM, which NASA’s Space Technology Mission Directorate expects to launch in 2016, will carry 31 lbs. of another green propellant — AF-M315E — developed by the U.S. Air Force Research Laboratory in California. During the demonstration to be carried out by Ball Aerospace & Technologies Corp., of Boulder, Colorado, the spacecraft’s five engines or thrusters will burn in different operations, testing how reliably the engines perform. Aerojet Rocketdyne, of Redmond, Washington, built the thrusters.
For its part, Goddard carried out fluid testing on GPIM’s systems and components, Bacha said. In particular, the test team carried out the first-ever “surge” and flow testing on AF-M315E. Surge is a phenomenon that occurs when an isolation valve opens to allow propellant to rapidly fill empty manifold lines. These pressures, if too high, potentially can damage sensitive flight components downstream. Flow testing, meanwhile, reveals how individual components perform in a system using the propellant. No data of this type existed for the AF-M315E prior to Goddard’s surge and flow testing, Bacha said.
“We have so many balls in the air with green propellant,” she added. “We appreciate the opportunity to get our hands dirty, so to speak, with these propellants.”
Another Alternative
Although the more traditionally used hydrazine will not be completely displaced due to its long heritage and widespread use, the two green propellants do offer compelling advantages.
In addition to being easier to handle, they are more tolerant of low temperatures and could bring about less-expensive, more flexible mission designs. Furthermore, both green propellant options are better performing than hydrazine, meaning that a spacecraft could carry out more maneuvers on one tank of propellant or could reduce the needed propellant leaving room for additional flight instruments.
“It’s beneficial that we understand both,” Mulkey said. “The change is coming.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Nortech Systems Incorporated Earns AS9100 Certification for Monterrey, Mexico Facility
11/04/2025 | BUSINESS WIRENortech Systems, Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced that its Monterrey, Mexico, facility has achieved AS9100:D certification.
PsiQuantum, Lockheed Martin Form Strategic Collaboration to Accelerate Quantum Computing for Aerospace and Defense
11/04/2025 | BUSINESS WIREPsiQuantum and Lockheed Martin have signed a memorandum of understanding (MoU) to accelerate the development of quantum computing applications in aerospace and defense.
Aircraft Wire and Cable Market to surpass USD 3.2 Billion by 2034
10/30/2025 | Global Market Insights Inc.The global aircraft wire and cable market was valued at USD 1.8 billion in 2024 and is estimated to grow at a CAGR of 5.9% to reach USD 3.2 billion by 2034, according to recent report by Global Market Insights Inc.
Honeywell Announces Updated Business Segment Structure Ahead Of Aerospace Spin-Off
10/28/2025 | HoneywellHoneywell announced its updated business segment structure ahead of the planned separation of its Aerospace Technologies business, expected in the second half of 2026, and its Solstice Advanced Materials business, expected to be completed on October 30, 2025.
Lockheed Martin Signs Strategic Partnership Framework with Korean Air
10/28/2025 | Lockheed MartinLockheed Martin is collaborating with Korean Air to explore opportunities to support the U.S. government’s (USG) Regional Sustainment Framework (RSF) initiative, as well as expand Maintenance, Repair, Overhaul & Upgrade (MROU) cooperation to third-country markets.