From Allergens to Anodes: Pollen Derived Battery Electrodes
February 5, 2016 | Purdue UniversityEstimated reading time: 2 minutes
Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.
"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an associate professor in the School of Chemical Engineering and the School of Materials Engineering at Purdue University.
Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphite. Lithium ions are contained in a liquid called an electrolyte, and these ions are stored in the anode during recharging.
The researchers tested bee pollen- and cattail pollen-derived carbons as anodes.
"Both are abundantly available," said Pol, who worked with doctoral student Jialiang Tang. "The bottom line here is we want to learn something from nature that could be useful in creating better batteries with renewable feedstock."
Research findings are detailed in a paper that appeared Friday (Feb. 5) in Nature's Scientific Reports.
Whereas bee pollen is a mixture of different pollen types collected by honeybees, the cattail pollens all have the same shape.
"I started looking into pollens when my mom told me she had developed pollen allergy symptoms about two years ago," Tang said. "I was fascinated by the beauty and diversity of pollen microstructures. But the idea of using them as battery anodes did not really kick in until I started working on battery research and learned more about carbonization of biomass."
The researchers processed the pollen under high temperatures in a chamber containing argon gas using a procedure called pyrolysis, yielding pure carbon in the original shape of the pollen particles. They were further processed, or "activated," by heating at lower temperature – about 300 degrees Celsius - in the presence of oxygen, forming pores in the carbon structures to increase their energy-storage capacity.
The research showed the pollen anodes could be charged at various rates. While charging for 10 hours resulted in a full charge, charging them for only one hour resulted in more than half of a full charge, Pol said.
"The theoretical capacity of graphite is 372 milliamp hours per gram, and we achieved 200 milliamp hours after one hour of charging," he said.
The researchers tested the carbon at 25 degrees Celsius and 50 degrees Celsius to simulate a range of climates.
"This is because the weather-based degradation of batteries is totally different in New Mexico compared to Indiana," Pol said.
Findings showed the cattail pollens performed better than bee pollen.
The work is ongoing. Whereas the current work studied the pollen in only anodes, future research will include work to study them in a full-cell battery with a commercial cathode.
"We are just introducing the fascinating concept here," Pol said. "Further work is needed to determine how practical it might be."
Electron microscopy studies were performed at the Birck Nanotechnology Center in Purdue's Discovery Park.
The work was supported by Purdue's School of Chemical Engineering. The electron microscopy studies at Birck were funded by a Kirk exploratory research grant and were conducted by doctoral students Arthur D. Dysart and Vinodkumar Etacheri. An XPS measurement was conducted by Dmitry Zemlyanov at Birck. Other support came from the Hoosier Heavy Hybrid Center of Excellence (H3CoE) fellowship, funded by U.S. Department of Energy.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.