The Future of Fuel Cells: Better-Performing and Less Expensive
March 3, 2016 | UOITEstimated reading time: 3 minutes

To the uninitiated, fuel cells are typically compared to batteries. The working principle of each is generally the same: a chemical reaction produces a quantity of energy which is then converted into usable electric power. But unlike a battery, you never recharge a fuel cell. You keep feeding it fuel and it keeps producing electricity.
The earliest fuel cells actually date back some 175 years, but researchers like the University of Ontario Institute of Technology’s (UOIT) Brad Easton, PhD are still searching for ways to make them commercially viable.
“Improving the performance of materials inside a fuel cell under all potential operating conditions is a complex challenge involving considerations of temperature, moisture and the specific elements involved in the chemical reactions,” explains Dr. Easton. “We focus on polymer electrolyte membrane fuel cells (PEMFC) – a clean energy technology that electrochemically reacts hydrogen and oxygen to produce water and electricity.”
PEMFCs are becoming profitable in niche commercial markets such as industrial vehicles (e.g. forklifts). There are also applications for stationary/backup power.
New federal funding announced for Dr. Easton’s fuel cell research
Through a new Strategic Partnership Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Associate Professor with the university’s Faculty of Science will explore water and ion transport in ceramic carbon electrodes for fuel cells. The NSERC project ($363,350 over three years) includes industry support from PEMFC technology global leader Ballard Power Systems Inc. of Burnaby, British Columbia, and academic collaboration with researchers at Simon Fraser University (SFU) in Burnaby.
“The technology could be more widely deployed if we can discover how to improve the performance-to-cost ratio of the materials in the fuel cells,” says Dr. Easton. “The real opportunity involves a new low-cost technology called sulfonated silica-based ceramic carbon electrodes (SS-CCE). Fuel cells made with SS-CCE display excellent performance and superior tolerance to dry operating conditions compared to conventional fuel cell materials. Fuel cell performance suffers severely if they are not well hydrated.”
UOIT historic fact: Dr. Brad Easton’s award is just the second NSERC Strategic Partnership Grant to be led by a UOIT researcher.
Dr. Easton’s SS-CCE research began nearly a decade ago through an NSERC Discovery Grant. Much of the initial work was done by 2015 UOIT PhD graduate Jennie Eastcott, who also completed her undergraduate studies at UOIT. Dr. Eastcott is now a postdoctoral fellow at SFU and holds a prestigious Mitacs Elevate postdoctoral fellowship supported by Automotive Fuel Cell Cooperation.
“The outcomes of this research have major implications for improvement on the operating lifetime of fuel cells and in aiding the design of materials that are more durable,” says Dr. Easton. We want to determine if these novel materials meet the durability requirements for commercial deployment of the next generation of fuel cells by companies like Ballard.”
Quotes:
“We appreciate NSERC’s recognition of the novel research plans and impressive track record of Dr. Easton and his colleagues. We are very proud of his achievements and look forward to significant advances in fuel cell design through this collaborative project,” says Greg Crawford, PhD, Dean, Faculty of Science.
“Strategic Partnerships connect companies and governments with Canada’s brain trust to advance research in areas where we can be a world leader. By accessing deep research expertise, these collaborations can help provide tangible outcomes to solve fundamental societal and economic issues,” says Dr. B. Mario Pinto, President, Natural Sciences and Engineering Research Council of Canada.
About NSERC
NSERC invests over $1 billion each year in natural sciences and engineering research in Canada. Our investments deliver discoveries, valuable world-firsts in knowledge claimed by a brain trust of over 11,000 professors, world-leading researchers in their fields. Our investments enable partnerships and collaborations that connect industry with discoveries and the people behind them. Researcher-industry partnerships established by NSERC help inform R&D, solve scale-up challenges and reduce the risks of developing high-potential technology.
Our investments provide scholarships and hands-on training experience for the next generation of science and engineering leaders in Canada, more than 30,000 post-secondary students and post-doctoral fellows.
Suggested Items
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.