In recent years, computer scientists have been investigating a range of techniques for removing reflections from digital photographs shot through glass. Some have tried to use variability in focal distance or the polarization of light; others, like those at MIT, have exploited the fact that a pane of glass produces not one but two reflections, slightly offset from each other.
At the Institute of Electrical and Electronics Engineers’ International Conference on Acoustics, Speech, and Signal Processing this week, members of the MIT Media Lab’s Camera Culture Group will present a fundamentally different approach to image separation. Their system fires light into a scene and gauges the differences between the arrival times of light reflected by nearby objects — such as panes of glass — and more distant objects.
In earlier projects, the Camera Culture Group has measured the arrival times of reflected light by using an ultrafast sensor called a streak camera. But the new system uses a cheap, off-the-shelf depth sensor of the type found in video game systems.
At first glance, such commercial devices would appear to be too slow to make the fine discriminations that reflection removal requires. But the MIT researchers get around that limitation with clever signal processing. Consequently, the work could also have implications for noninvasive imaging technologies such as ultrasound and terahertz imaging.
“You physically cannot make a camera that picks out multiple reflections,” says Ayush Bhandari, a PhD student in the MIT Media Lab and first author on the new paper. “That would mean that you take time slices so fast that [the camera] actually starts to operate at the speed of light, which is technically impossible. So what’s the trick? We use the Fourier transform.”
The Fourier transform, which is ubiquitous in signal processing, is a method for decomposing a signal into its constituent frequencies. If fluctuations in the intensity of the light striking a sensor, or in the voltage of an audio signal, can be represented as an erratic up-and-down squiggle, the Fourier transform redescribes them as the sum of multiple, very regular squiggles, or pure frequencies.
Phased out
Each frequency in a Fourier decomposition is characterized by two properties. One is its amplitude, or how high the crests of its waves are. This describes how much it contributes to the composite signal.
The other property is phase, which describes the offset of the wave’s troughs and crests. Two nearby frequencies may be superimposed, for instance, so that their first crests are aligned; alternatively, they might align so that the first crest of one corresponds with a trough of the other. With multiple frequencies, differences in phase alignment can yield very different composite signals.
If two light signals — one reflected from a nearby object such as a window and one from a more distant object — arrive at a light sensor at slightly different times, their Fourier decompositions will have different phases. So measuring phase provides a de facto method for measuring the signals’ time of arrival.
There’s one problem: A conventional light sensor can’t measure phase. It only measures intensity, or the energy of the light particles striking it. And in other settings, such as terahertz imaging, measuring phase as well as intensity can dramatically increase costs.
So Bhandari and his colleagues — his advisor, Ramesh Raskar, the NEC Career Development Associate Professor of Media Arts and Sciences; Aurélien Bourquard, a postdoc in MIT’s Research Laboratory of Electronics; and Shahram Izadi of Microsoft Research — instead made a few targeted measurements that allowed them to reconstruct phase information.
In collaboration with Microsoft Research, the researchers developed a special camera that emits light only of specific frequencies and gauges the intensity of the reflections. That information, coupled with knowledge of the number of different reflectors positioned between the camera and the scene of interest, enables the researchers’ algorithms to deduce the phase of the returning light and separate out signals from different depths.
Page 1 of 2
Suggested Items
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
Key Insights on Photoresist for Defect Reduction
05/21/2025 | I-Connect007 Editorial TeamIn PCB manufacturing, understanding the intricacies of the photoresist process is crucial for achieving high-quality results. Industry experts Josh Krick, a technical service engineer at IEC, and Tim Blair, a PCB imaging specialist at Tim Blair LLC, share their knowledge on the essential stages of photoresist application, highlight critical advancements in materials, and discuss common defects encountered during production. They share best practices and innovative solutions to enhance the manufacturing process, reduce defects, and ensure efficiency and reliability in high-tech applications.