Happy’s Essential Skills: Failure Modes and Effects Analysis (FMEA)
April 6, 2016 | Happy HoldenEstimated reading time: 12 minutes
Figure 2: FMEA flow chart.
Steps in Performing FMEA
- Discuss and define system functional requirements (scope), including all modes of operation (list in order of decreasing importance). Is it for concept, system, design, process, product or service and customer needs?
- Develop a functional block diagram and a reliability block diagram (Figure 2) for each subassembly being analyzed.
- Define parameters and functions of each functional block required for successful operation of the system.
- Using the FMEA forms to document the further steps, identify potential failure modes for each of the functional blocks.
- Analyze system or subassembly functions affected by factors such as those in the list of FMEA considerations.
- Identify all possible causes for each failure mode of the functional block being analyzed. The causes must be detailed to the component level wherever possible. These are potential failure modes. If necessary, go back and rewrite the function with more detail to be sure the failure modes show a loss of that function.
- Identify all possible ways the failure modes could affect the functions of the higher level assemblies.
- Assign the frequency, criticality, and detection values for each failure mode. (Tables 1– 3)
- Obtain the RPN by multiplying the three values assigned in step 8. This priority number will allow us to focus on the most important failure modes first.
- Determine all the possible root causes and corrective actions for each failure mode, and update the design status as it progresses.
- Summarize the failure modes and corrective actions in order of decreasing RPN.
- Focus on eliminating at least the 50% of the failure modes with the highest RPN.
An example of a FMEA analysis is shown in Figure 3.
Page 3 of 5
Suggested Items
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Electronic System Design Industry Posts $4.9 Billion in Revenue in Q4 2024
04/15/2025 | SEMIElectronic System Design (ESD) industry revenue increased 11% to $4,927.3 million in the fourth quarter of 2024 from the $4440.9 million reported in the fourth quarter of 2023, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.
Connect the Dots: Involving Manufacturers Earlier Prevents Downstream Issues
04/17/2025 | Matt Stevenson -- Column: Connect the DotsIf you have read any of my earlier columns, you know I am passionate about helping designers design for the reality of manufacturing. Designing for manufacturability (DFM) is a team sport. DFM is a design process that looks forward to the manufacturing process and integrates with it so that manufacturing requirements and capabilities can be accurately reflected in the design work.
Global PCB Connections: The Next Wave of HDI PCBs– How Design Engineers Can Stay Ahead
04/17/2025 | Jerome Larez -- Column: Global PCB ConnectionsHigh density interconnect (HDI) printed circuit boards have come a long way from their origins as a niche technology for miniaturized applications. Today, HDI PCBs are at the forefront of innovation, driven by an insatiable demand for faster, smaller, and more powerful electronic devices. As consumer electronics, 5G infrastructure, and AI-driven systems advance, design engineers must stay ahead of the curve to ensure their PCB designs meet evolving industry demands.
Copyright © 2025 I-Connect007 | IPC Publishing Group Inc. All rights reserved.
Log in