Happy’s Essential Skills: Failure Modes and Effects Analysis (FMEA)
April 6, 2016 | Happy HoldenEstimated reading time: 12 minutes
In simple terms, the FMEA process attempts to list every failure mode of each component of a system, and to predict its effect on system operation. Failure effects can be considered at more than one level (e.g., effects at the subsystem or overall system levels).
FMEA can be accomplished using either a component or functional approach. In the component approach, actual failure modes are listed (e.g., resistor open, bearing seizure). The functional approach is used when the details of the design are not yet fully defined. In this approach, function failures are considered (e.g., no feedback, memory lost). FMEA can also be performed using a combination of component and functional approaches. The failure mode is the symptom of the failure, as distinct from the cause of the failure, which consists of the proved reasons for the existence of the symptoms. Reliability aspects of the components must be considered in this process. FMEA requires inputs from hardware, software, systems, customer service, and manufacturing in assessing component failures, effects at higher levels of the system, fault detection, and in evaluating failure compensating provisions in the design.
Procedure
FMEA should be performed by a team of people having broad knowledge of the system's design and application. All available information on the design should be obtained: external and internal reference specifications, schematics, computer-aided design (CAD) data, stress analysis, reliability prediction data, test results, etc.
A system functional block diagram and reliability block diagram (Figure 1) should be prepared, as these are important for preparing the FMEA, and for understanding the completed analysis. All possible operating modes of the system and their functional relationships should be considered in the analysis. If the system has redundancy, it should also be considered by evaluating the effects of failure modes assuming the redundant system may or may not function.
Figure 1: Reliability block diagram examples.
FMEA can be performed from different points of view, such as failure detectability, safety, repair cost, availability, etc. The customer's point of view should always be first, in order to improve customer satisfaction with the final product. The viewpoint being considered should be consistent throughout a particular analysis, in order to assign proper criticality values. A hierarchical approach works well with systems, using a component approach at the lowest assembly level, and a functional approach to combine the effects of various subsystems. This also allows the FMEA to be performed even when some subsystems are not yet completely designed.
If CAD has been used on parts of the system, the FMEA can utilize that capability to simulate the effects of various failure modes. Such an analysis can greatly enhance the accuracy and objectivity of the FMEA process.
FMEA Process
FMEA is an ongoing process which should be started as soon as initial design information is available. It should be updated and enhanced as the design evolves, so that the analysis can be used to improve the design. All possible design alternatives should be analyzed separately, so that the effect on system performance and reliability can be considered in deciding which option to implement. Test results should be used later to update the analysis.
Requirements to Perform FMEA
- A team of people with a commitment to improve the ability of the design to meet the customer's needs
- Schematics and block diagrams of each level of the system, from subassemblies to complete system
- Component specifications, parts lists and design data
- Functional specifications of modules, subassemblies, etc.
- Design manuals
- Manufacturing requirements and details of the processes to be used
- FMEA forms and a list of any special considerations, such as safety or regulatory, that are applicable to this product
Page 2 of 5
Suggested Items
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Electronic System Design Industry Posts $4.9 Billion in Revenue in Q4 2024
04/15/2025 | SEMIElectronic System Design (ESD) industry revenue increased 11% to $4,927.3 million in the fourth quarter of 2024 from the $4440.9 million reported in the fourth quarter of 2023, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.
Connect the Dots: Involving Manufacturers Earlier Prevents Downstream Issues
04/16/2025 | Matt Stevenson -- Column: Connect the DotsIf you have read any of my earlier columns, you know I am passionate about helping designers design for the reality of manufacturing. Designing for manufacturability (DFM) is a team sport. DFM is a design process that looks forward to the manufacturing process and integrates with it so that manufacturing requirements and capabilities can be accurately reflected in the design work.
Global PCB Connections: The Next Wave of HDI PCBs– How Design Engineers Can Stay Ahead
04/17/2025 | Jerome Larez -- Column: Global PCB ConnectionsHigh density interconnect (HDI) printed circuit boards have come a long way from their origins as a niche technology for miniaturized applications. Today, HDI PCBs are at the forefront of innovation, driven by an insatiable demand for faster, smaller, and more powerful electronic devices. As consumer electronics, 5G infrastructure, and AI-driven systems advance, design engineers must stay ahead of the curve to ensure their PCB designs meet evolving industry demands.
Würth Elektronik ICS at PCIM Europe 2025
04/14/2025 | Wurth ElektronikWürth Elektronik ICS will be exhibiting at PCIM in Nuremberg from 6 to 8 May 2025. The specialist for PCB connection solutions in the high-current sector and inventor of Powerelements will be focussing on power electronics at exhibition stand 337 in hall A6.