Terahertz Technology Reaches Industrial Maturity
April 6, 2016 | Fraunhofer IBMTEstimated reading time: 4 minutes

Terahertz is a new technology in which nondestructive testing of components and surfaces is possible. Until now, these devices and, in particular, the sensor heads have been expensive and unwieldy. Researchers at Fraunhofer have now succeeded in making sensor heads more compact and, thus, cheaper, which facilitates their handling considerably. First prototypes are already being used for the production of plastic pipes. They are also very well suited for analyzing coatings of fiber composites. From April 25 to 29, 2016, these new sensor heads are being presented at the Hannover Messe (Hall 2, Stand C16/C22).
More than ten years ago, terahertz technology was the next big thing. Back then there was a lot of talk about ‚nude‘ body scanners. People thought that the devices that were being installed at airports were going to make revealing images of passengers. Moreover, scientists were hoping to develop measurement systems for material testing and inspection of components using terahertz radiation. Despite all these great expectations, the long-awaited breakthrough for terahertz technology did not come about. Compared to the conventional methods currently used for non-destructive testing, such as X-ray or ultrasound, terahertz technology is simply too expensive, unwieldy and overall impractical.
Measuring system with the innovative sensor head
The latest developments of the Fraunhofer Institute for Telecommunication, Heinrich Hertz Institut, HHI in Berlin, could now give terahertz technology a decisive boost. The research team of Thorsten Göbel, who heads the Terahertz Research Group at HHI, has succeeded in developing terahertz devices that for the first time are made from standard and therefore low-cost components and are also relatively easy to handle. At the Hannover Messe, the experts will be presenting a terahertz measuring system with an innovative sensor head, which allows easy testing of various components, such as plastic tubes. The principle employed by Fraunhofer HHI for generating terahertz radiation is based on an optoelectronic method. Using a special semiconductor, laser light pulses are converted into electrical terahertz pulses that are only one billionth of a second long.
The reason for the lack of success of the terahertz technology until now is mainly due to the required properties of the semiconductors being used. These could only be achieved with materials that required an illumination with a wavelength of 800 nanometers. Both the terahertz system‘s laser and optical components are too expensive and not robust enough for industrial use when using this rather exotic wavelength.
Page 1 of 2
Suggested Items
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.