Wearable Sweat Sensor Thanks to Battery-free 'Water Pump' Inspired by Plants
April 11, 2016 | TU EindhovenEstimated reading time: 2 minutes

Plants and trees soak up water in the soil by letting it vaporize through pores in the leaves. Scientists at TU/e have now taken this principle to develop a sweat sensor through which the sweat itself flows at a steady rate and is analyzed. Using laser micro-manufacturing, they made minuscule structures in flexible plastic and integrated a small analytic chip. Their work overcomes an important hurdle towards the development of flexible sweat sensors that can be stuck on the skin.
The substances in our sweat say much about our health, so sportsmen and women stand to gain quite a lot as do medical applications. For instance, the saline concentration in sweat can tells us about cystic fibrosis while the acidity level is a decisive factor in certain skin diseases. To be able to monitor the development of this over time, ‘fresh’ sweat must be constantly conducted through a sweat sensor, preferably one that has no moving or vulnerable parts and uses no power.
Doctoral student Chuan Nie and supervising professor Jaap den Toonder used nature as their source of inspiration for a sweat sensor to comply with these requirements. In the TU/e Microfab lab they made a device in flexible plastic foil with an inlet, a micro-channel and at the other end a porous structure. Using special paper at the inlet, the device soaks up the sweat. The moisture is transported by the capillary action of the channel and the vaporization via the porous structure at the other end causes a constant flow to be created, just as in trees and plants. The device works like a kind of water pump that operates without external power.
Ultimately, the researchers also integrated a microchip in the device. The electrodes of the chip are inserted onto the channel and can therefore constantly analyze the sweat that passes through the channel. Chuan Nie built a prototype that measures the acidity level and proved that it worked effectively. In the same way chips that measure other substances in the sweat can now be integrated.
The research was carried out in collaboration with Holst Centre in Eindhoven. Holst and TU/e will continue to develop the flexible sweat sensor; for example as a sports application and for the medical analysis of sweat. The use of plastic foils will keep the final production costs low. One of the next steps will be the wireless transmission of the sensor’s data.
Chuan Nie received his doctorate on Tuesday 5 April at TU Eindhoven from professor Jaap den Toonder of the Mechanical Engineering department.
Suggested Items
Flexible Circuit Technologies Welcomes Regional Business Development Manager Derek Rossberg
07/15/2025 | Flexible Circuit TechnologiesFlexible Circuit Technologies a Minnesota-based flexible circuit and advanced electronics contract manufacturer, welcomes Derek Rossberg as Regional Business Development Manager.
Flexible Printed Circuit Board Market to Reach US$40.447 Billion by 2030
07/10/2025 | Globe NewswireThe flexible printed circuit board market will grow at a CAGR of 8.28% to be valued at US$40.447 billion in 2030 from US$27.17 billion in 2025.
Taiwan PCB Industry Adopts Cautious CapEx Strategy, Eyes AI and Southeast Asia for Growth
07/10/2025 | TPCADriven by the stabilization of the global electronics market and the strong demand for AI applications, although the Taiwan printed circuit (PCB) industry is facing a trend of capital expenditure convergence for three consecutive years, its output value and operating performance continue to rise, indicating that the industry is shifting from high investment to high added value development, and the industrial structure is undergoing a steady transformation.
IBIDEN Earns Recognition in FTSE Russell ESG Indexes, Reinforcing Commitment to Sustainable Growth
07/07/2025 | IBIDENIBIDEN Co, Ltd. is pleased to announce that it has been selected for FTSE4Good Index Series for the tenth consecutive year, FTSE Blossom Japan Index for the nineth consecutive year, and FTSE Blossom Japan Sector Relative Index for the fourth consecutive year.
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.