Wearable Sweat Sensor Thanks to Battery-free 'Water Pump' Inspired by Plants
April 11, 2016 | TU EindhovenEstimated reading time: 2 minutes

Plants and trees soak up water in the soil by letting it vaporize through pores in the leaves. Scientists at TU/e have now taken this principle to develop a sweat sensor through which the sweat itself flows at a steady rate and is analyzed. Using laser micro-manufacturing, they made minuscule structures in flexible plastic and integrated a small analytic chip. Their work overcomes an important hurdle towards the development of flexible sweat sensors that can be stuck on the skin.
The substances in our sweat say much about our health, so sportsmen and women stand to gain quite a lot as do medical applications. For instance, the saline concentration in sweat can tells us about cystic fibrosis while the acidity level is a decisive factor in certain skin diseases. To be able to monitor the development of this over time, ‘fresh’ sweat must be constantly conducted through a sweat sensor, preferably one that has no moving or vulnerable parts and uses no power.
Doctoral student Chuan Nie and supervising professor Jaap den Toonder used nature as their source of inspiration for a sweat sensor to comply with these requirements. In the TU/e Microfab lab they made a device in flexible plastic foil with an inlet, a micro-channel and at the other end a porous structure. Using special paper at the inlet, the device soaks up the sweat. The moisture is transported by the capillary action of the channel and the vaporization via the porous structure at the other end causes a constant flow to be created, just as in trees and plants. The device works like a kind of water pump that operates without external power.
Ultimately, the researchers also integrated a microchip in the device. The electrodes of the chip are inserted onto the channel and can therefore constantly analyze the sweat that passes through the channel. Chuan Nie built a prototype that measures the acidity level and proved that it worked effectively. In the same way chips that measure other substances in the sweat can now be integrated.
The research was carried out in collaboration with Holst Centre in Eindhoven. Holst and TU/e will continue to develop the flexible sweat sensor; for example as a sports application and for the medical analysis of sweat. The use of plastic foils will keep the final production costs low. One of the next steps will be the wireless transmission of the sensor’s data.
Chuan Nie received his doctorate on Tuesday 5 April at TU Eindhoven from professor Jaap den Toonder of the Mechanical Engineering department.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/02/2025 | Marcy LaRont, PCB007 MagazineIn our industry, this week’s must-read features include CEE’s Tom Yang and his perspective on having a global business amidst tariff talk and other challenges. Joe Fjelstadt talks to the “Flexperts,” Nick Koop of TTM and Mark Finstead of Flexible Circuit Technologies. Nolan Johnson interviews the McGucken Group about the importance of empathic leadership in BANI times. NCAB’s Ryan Miller writes about reliability and compliance for building PCBs for medical applications, and surprise, more news from Siemens.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Real Time With... IPC APEX EXPO 2025: Best Student Technical Paper Winner—Attila Rektor
04/10/2025 | Marcy LaRont, I-Connect007Attila Rektor, a Ph.D student from Boise State, won the best technical paper award at IPC APEX EXPO 2025. His paper explores enhancing the conductivity of laser-induced graphene for flexible circuits. The research, funded by SAIC, involved modulating surface energy to enable effective copper plating. This breakthrough has potential applications in flexible printed circuit boards, sensing, and biomedical devices.
Real Time with... IPC APEX EXPO 2025: Advancements for Flexible Circuit Technologies
04/11/2025 | Real Time with...IPC APEX EXPOMark Finstad and Chris Clark from Flexible Circuit Technologies discuss their new marketing campaign for catheter circuits, featuring larger formats and advanced specifications. They explain the development of in-house materials for high-density circuits, enhancing cost competitiveness. They highlight the opening of a new facility in China for advanced assembly services, along with focused training sessions to fill industry education gaps and promote early customer engagement for better project outcomes.
CEE PCB Appoints Markus Voeltz to Business Development Director Europe
04/02/2025 | CEE PCBCEE PCB, a leading manufacturer of printed circuit boards (PCBs) and flexible printed circuits (FPCs) with 3 production facilities in China, is expanding its presence in Europe and began providing local support in March 2025. With 25 years of experience in the industry, the company is enhancing its commitment to European customers by providing more direct collaboration for technical inquiries and advice.