NASA Investigates 3-D Printing for Building Densely Populated Electronic Assemblies
April 26, 2016 | NASAEstimated reading time: 2 minutes

As detector assemblies get smaller and denser — packed with electronic components that all must be electrically connected to sense and read out signals — it’s becoming increasingly more challenging to design and manufacture these all-important instrument devices.
A team of NASA technologists at the Goddard Space Flight Center in Greenbelt, Maryland, however, has begun investigating the use of a technique called aerosol jet printing or direct-write manufacturing to produce new detector assemblies that are not possible with traditional assembly processes.
“If we succeed, aerosol jet technology could define a whole new way to create dense electronic board assemblies and potentially improve the performance and consistency of electronic assemblies,” explained Goddard technologist Beth Paquette, who is leading the R&D effort that began last fiscal year. Furthermore, aerosol jet printing promises to slash the time it takes to manufacture circuit boards, from a month to a day or two, she added.
Important Distinction
As with other 3-D printing techniques, aerosol jet manufacturing builds components by depositing materials layer-by-layer following a computer-aided design, or CAD, drawing. However, jet aerosol printing offers an important difference.
Instead of melting and fusing plastic powder or some other material in precise locations, as in the case of many 3-D printers, aerosol jet printing uses a carrier gas and printer heads to deposit a fine aerosol of metal particles, including silver, gold, platinum, or aluminum, onto a surface. Aerosol jet printers also can deposit polymers or other insulators and can even print carbon nanotubes, cylindrically shaped carbon molecules that have novel properties useful in nanotechnology, electronics, and optics.
“It can print around bends, on spheres or on something flat, or on a flexible surface, which then can be flexed into the shape you want,” she said.
These attributes make the technology ideal for detector assemblies, particularly those that need to be shaped differently or are very small, yet dense because of the large number of tiny components that must be electrically wired or linked together on a circuit board — an inescapable reality as instruments get smaller and smaller.
“We can make these wires microns in width,” Paquette said. “These lines are very small, down to 10 microns wide. These sizes aren’t possible using traditional circuit board manufacturing processes.” (By way of comparison, the average human hair measures between 17 and 191 microns in width.)
Page 1 of 2
Suggested Items
STARTEAM GLOBAL Unveils Innovative Additive Solder Mask Process
06/02/2025 | STARTEAM GLOBALSTARTEAM GLOBAL, a leading PCB manufacturer, has introduced a revolutionary additive solder mask process at its Flero STARTEAM (FST) factory in Italy, leveraging digital inkjet technology to enhance production efficiency and sustainability.
Strategic Materials Conference 2025 Spotlights Materials Innovation to Advance Semiconductor Manufacturing
06/02/2025 | SEMIWith materials innovation at the core of next-generation semiconductor technologies, the Strategic Materials Conference (SMC) 2025 brings together top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest trends and advancements.
CACI to Deliver Additional SIGINT and EW Technology for U.S. Army Soldiers with TLS BCT Manpack
06/02/2025 | CACI International Inc.CACI International Inc announced that a contract modification has been awarded by the U.S. Army to continue procurement, training, and fielding for the Terrestrial Layer System Brigade Combat Team Manpack (TLS BCT Manpack).
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
Meyer Burger Shuts Down Solar Module Production, Lays Off 282 Employees in the U.S.
05/30/2025 | Meyer BurgerMeyer Burger Technology AG is forced to stop its solar module production in the U.S., which is still ramping up, due to a lack of funds. On May 29, 2025, all 282 remaining employees at the Goodyear, Arizona, site received their notices of termination. Production with an annual capacity of 1.4 gigawatts was shut down immediately.