-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Selective Soldering: Design, Process Challenges and Practical Solutions
April 28, 2016 | Pete Starkey, I-Connect007Estimated reading time: 8 minutes
Although SMT is today’s predominant electronics assembly technology and the proportion of through-hole components continues to decline, the need for some through-hole assembly will remain for many years. As component density and board complexity increase, hand-soldering can no longer be relied upon to give acceptable or repeatable results and selective soldering techniques are growing in popularity. What is the most reliable and cost effective solution to through hole soldering in tin-lead and lead-free environments? What are the design and process challenges and what are the practical solutions?
A SMART Group workshop at the Bromsgrove, UK, premises of equipment and process materials distributor APP Electronics, set out to provide the answers, with a programme combining technical presentations, live demonstrations and hands-on sessions, introduced and moderated by Nigel Burtt, senior electronics manufacturing engineer at Renishaw and SMART Technical Committee Chairman.
Burtt launched the proceedings with a general overview of selective soldering processes, focusing on multi-point dip-nozzle soldering and single point mini-wave nozzle soldering, and described two main classes of machine, where either a robot brought the PCB assembly to a stationary soldering nozzle, or the nozzle moved to a stationary PCB assembly on a conveyor, showing examples of each type.
In principle, the objective was to mimic wave-soldering, but in localised areas. Flux was applied selectively to specific component leads, the PCB was pre-heated to drive off solvents and activate the flux, and then the component leads were brought into contact with the solder wave. A continuous flow of nitrogen around the solder nozzle was essential in selective soldering, to keep the nozzle free from dross, and could be used as a means of additional local pre-heating. The type and size of soldering nozzle was chosen to suit components and PCBs. Single point mini-wave nozzles could be used for dip soldering single leads or drag soldering multiple leads; smaller sizes gave less heat transfer and larger sizes enabled higher speeds. Burtt showed a series of video illustrations of various actual soldering operations.
Solder pot temperatures were generally higher than would be used in wave soldering, placing more constraints on the performance of the flux and potentially more local thermal stress on components and PCB materials. Additionally, there was a greater tendency for copper to be dissolved from component leads and PCB pads, especially with lead-free alloys, and Burtt recommended reference to the Good Practice Guide MAT 26, available free-of-charge on the NPL website. Layout design rules needed to take into account the additional clearances required to accommodate selective soldering, and it was recommended to remove solder mask between pads to eliminate solder balls.
Success in selective soldering is critically dependent on choosing a suitable flux, and placing it exactly where it is required. This was the essence of the first of two presentations from Wim Schouten, regional sales manager for Vitronics Soltec. He explained that although a strong flux was required to clean oxidised metal surfaces and support wetting, there were potential risks to reliability if the right formulation was not chosen.
He advised against using the same flux as used for regular wave soldering because the conditions were significantly different: in a wave soldering application all of the flux came into contact with liquid solder, the high temperature of which de-activated the flux chemistry. In selective soldering not all flux made contact with solder, and residual activators could cause reliability problems. Reliability considerations aside, selective soldering temperatures tended to be significantly higher than in regular wave soldering, so the flux might not be strong enough to work effectively and result in soldering defects. Furthermore, wave soldering flux formulations contained surfactants to promote spreading to cover the complete solder side of the PCB. In selective soldering, excessive spreading of was undesirable although the flux needed to be capable of penetrating the barrels of plated-through holes. Alcohol-based fluxes were preferred to water-based formulations because rapid solvent evaporation resulted in less spreading and higher flux solids per unit area.Page 1 of 3
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Koh Young, Fuji, and Kurtz ERSA Drive Smart Manufacturing Solutions for EV and Automotive Electronics at Kunshan, China Technical Seminar
09/11/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, partnered with Fuji Corporation and Kurtz ERSA to host an exclusive technical seminar for leading automotive manufacturers in East China. Held on September 4 at Fuji’s factory in Kunshan, the event gathered participants representing over 35 companies.
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.
Electra’s ElectraJet EMJ110 Inkjet Soldermask Now in Black & Blue at Sunrise Electronics
09/08/2025 | Electra Polymers LtdFollowing the successful deployment of Electra’s Green EMJ110 Inkjet Soldermask on KLA’s Orbotech Neos™ platform at Sunrise Electronics in Elk Grove Village, Illinois, production has now moved beyond green.
Absolute EMS: The Science of the Perfect Solder Joint
09/05/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is drawing attention to the critical role of 3D Solder Paste Inspection (SPI) in ensuring the reliability of both FLEX and rigid printed circuit board assemblies (PCBAs).
Indium Corporation to Highlight High-Reliability Solder Solutions at SMTA Guadalajara Expo
09/04/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, will feature a range of innovative, high-reliability solder products for printed circuit board assembly (PCBA) at the SMTA Guadalajara Expo and Tech Forum, to be held September 17-18 in Guadalajara, Mexico.