Spintronics for Future Information Technologies
April 29, 2016 | Helmholtz-Zentrum Berlin für Materialien und EnergieEstimated reading time: 1 minute
They thereby demonstrated that this class of materials is suitable for data processing based on spin. The work has been published in the renowned periodical Physical Review B and was selected as "Editor's Suggestion" article.
Future information technologies should employ considerably less energy for processing data. One exciting class of materials for this comprises topological insulators. Topological insulators are distinguished by their electrons at the surface being extremely mobile, while the bulk material within is an insulator and does not conduct. Since electrons also simultaneously carry a magnetic moment (spin), topological insulators might also make "spintronic" components feasible. Spintronic components would not be based on the movement of charge carriers like electrons (as in semiconductor components), but instead on the transport or manipulation of their spins. This would require considerably less energy.
An international team headed by HZB physicist Jaime Sánchez-Barriga has now shown how the spins of the electrons in topological insulators can be controlled. The team investigated samples of antimony-telluride, a topological insulator, using circularly polarised laser light. They were able to initiate and direct currents of electrons whose spins were oriented in parallel (i. e., spin-polarised currents) using the "rotational direction" of the laser light. In addition, they were successful in changing the orientation of the spins as well. The team was made up of experimentalists from the Max Born Institute in Berlin and Lomonossow University Moscow, together with theoreticians from Ludwig-Maximilians-Universität München (LMU). The work has been published in the renowned journal Physical Review B and was selected as "Editor's Suggestion" article.
"If you were to utilise magnetically doped topological insulators, you could also probably store this spin information", explains Oliver Rader, who heads the research group for green spintronics at HZB. "To investigate this however, and also be able to explore the dynamic behaviour of the magnetic moments in particular, ultra-short light pulses in the soft X-ray region are needed. These kinds of experiments can become standard with the planned upgrade of the BESSY II synchrotron source to BESSY-VSR", he hopes.
Suggested Items
Kasuo Electronics Launches Advanced Testing Laboratory to Strengthen Global Supply Chain Quality Assurance
04/29/2025 | BUSINESS WIREKasuo Electronics Co., Ltd, a globally recognized trader of electronic components, has officially operationalized its state-of-the-art testing laboratory.
QuantumScape, Murata Announce Framework for Ceramics Collaboration
04/25/2025 | BUSINESS WIREQuantumScape Corporation, a global leader in next-generation solid-state lithium-metal battery technology, and Murata Manufacturing Co. have entered into the first phase of an agreement to explore a collaboration for high-volume manufacturing of ceramic film for QS’s solid-state battery technology.
IPC Welcomes Exemptions to Reciprocal Tariffs
04/14/2025 | IPCIPC shared the following statement today on tariff exclusions and their implications on the global electronics industry. This statement can be attributed to Dr. John W. Mitchell, IPC president and CEO:
ASMPT Demonstrates Technology Leadership in SMT Assembly
04/09/2025 | ASMPTThe rapid development of artificial intelligence is driving the demand for high-performance processors and placing great demands on electronics manufacturing.
Tariff Uncertainty Weighs on Display Demand, Pricing, and the Supply of AMOLED Materials,
04/09/2025 | TrendForceTrendForce reports that the U.S. began implementing reciprocal tariffs on April 9th, based largely on trade deficits. Consequently, Asia—particularly Southeast Asia, a key hub for the consumer electronics supply chain—has been significantly impacted.