Small and Powerful: Pushing the Boundaries of Nano-Magnets
May 9, 2016 | Department of Energy, Office of ScienceEstimated reading time: 1 minute

The Science
Researchers have created extremely small, thermally stable magnetic particles. These CoFe2C nanoparticles have magnetic properties comparable to some rare earth magnets, the strongest permanent magnets ever created, at sizes as small as 5 nanometers, a million times smaller than an ant.
The Impact
The next generation of thermally stable data storage devices demands materials that are highly magnetic in a specific direction at small particle sizes. The new CoFe2C nanoparticles accomplish this goal and can lead to nano-magnets that work at room temperature.
Summary
Van Vleck’s Nobel-prize winning explanation of the quantum origin of magnetism dates back to 1937. However it was not until 1999 that research, supported by the Office of Basic Energy Sciences within the U.S. Department of Energy, demonstrated that density-functional-theory could accurately predict the magnetic strength of molecular-scale systems. By 2007, several groups had confirmed these developments, and today researchers can computationally ask: How chemically and electromagnetically durable could such nanoscale memory devices be? Physical laws impose limits. The reduction in size of ordinary iron-based magnets, the foundation of computer memory, decreases the temperature at which such particles can store information. One of the greatest problems hindering the field of nano-magnetism is that small particle sizes tend to mean small magnetic anisotropy (directional dependence of magnetic properties). A large magnetic anisotropy is absolutely crucial to these nanoparticles because it prevents fluctuations of the magnetic moment, a phenomenon that limits the use of these particles in memory storage and many other applications. To become technologically relevant, nano-magnets must be small, have a large magnetic anisotropy, and be thermally stable. Researchers at Virginia Commonwealth University have computationally investigated CoFe2C nanoparticles with mixed CoxC and FexC carbide phases that fit this exact description. After promising theoretical results, the researchers successfully synthesized the CoFe2C particles with the properties that were computationally expected. The newly synthesized particles have been proven thermally stable (and thus store information) up to 790K at sizes as small as 5 nanometers. Additionally, these particles have a magnetic anisotropy of 4.6 ± 2 x 106 J/m3, which is ten times larger than cobalt nanoparticles, and magnetic properties comparable to some rare earth magnets, the strongest permanent magnets ever created. These CoFe2C nanoparticles possess the unique characteristics of both small size and a large anisotropy and could represent the future of data storage devices.
Suggested Items
IT Distribution Records Strong Revenue Growth in Q1 Fueled by Personal Computing Purchases Amidst Tariff Uncertainty
05/02/2025 | IDCSales through distribution in North America posted a second consecutive quarter of growth in the first quarter of 2025. Distributor Revenues came in at $19.9B which is a 7.6% increase year-over-year, according to the International Data Corporation (IDC) North America Distribution Track e r (NADT).
Keysight EDA, Intel Foundry Collaborate on EMIB-T Silicon Bridge Technology for Next-Generation AI and Data Center Solutions
04/30/2025 | BUSINESS WIREKeysight Technologies, Inc. announced a collaboration with Intel Foundry to support Embedded Multi-die Interconnect Bridge-T (EMIB-T) technology, a cutting-edge innovation aimed at improving high-performance packaging solutions for artificial intelligence (AI) and data center markets in addition to the support of Intel 18A process node.
Federal Electronics Expands Business Development Team, Strengthening National Growth Strategy
04/28/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, is proud to announce the expansion of its Business Development team with the appointment of three industry veterans: Andrew Davis, Joel Robbins, and Will Oliver.
CONFIDEE: Guiding You Through Tariff Uncertainty
04/23/2025 | CONFIDEEThe current tariff landscape presents significant challenges for businesses, with shifting trade policies and increased duties impacting supply chains and overall costs. Navigating these complexities requires agility and strategic sourcing.
NASA Aims to Fly First Quantum Sensor for Gravity Measurements
04/18/2025 | NASAA lumpy, colorful 3D model of the Earth against a black background, illustrating variations in gravity. North and South America are visible. Red areas show higher gravity, blue areas show lower gravity.