A new paper-based test developed at MIT and other institutions can diagnose Zika virus infection within a few hours. The test, which distinguishes Zika from the very similar dengue virus, can be stored at room temperature and read with a simple electronic reader, making it potentially practical for widespread use.
“We have a system that could be widely distributed and used in the field with low cost and very few resources,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Department of Biological Engineering and Institute for Medical Engineering and Science (IMES) and the leader of the research team.
An outbreak of the Zika virus that began in Brazil in April 2015 has been linked to a birth defect known as microcephaly. Many infected people experience no symptoms, and when symptoms do appear they are very similar to those of related viruses such as dengue and chikungunya.
Currently, patients are diagnosed by testing whether they have antibodies against Zika in their bloodstream, or by looking for pieces of the viral genome in a patient’s blood sample, using a test known as polymerase chain reaction (PCR). However, these tests can take days or weeks to yield results, and the antibody test cannot discriminate accurately between Zika and dengue.
“One of the key problems in the field is being able to distinguish what these patients have in areas where these viruses are co-circulating,” says Lee Gehrke, the Hermann L.F. von Helmholtz Professor in IMES and an author of the paper.
Collins, Gehrke, and colleagues from Harvard University’s Wyss Institute for Biologically Inspired Engineering and other institutions described the new device in the May 6 online edition of Cell. The paper’s lead authors are Melissa Takahashi, an IMES postdoc; Dana Braff, an MIT graduate student; Keith Pardee, an assistant professor at the University of Toronto and former Wyss Institute research scientist; Alexander Green, an assistant professor at Arizona State University and former Wyss Institute postdoc; and Guillaume Lambert, a visiting scholar at the Wyss Institute.
Paper-based detection
The new device is based on technology that Collins and colleagues previously developed to detect the Ebola virus. In October 2014, the researchers demonstrated that they could create synthetic gene networks and embed them on small discs of paper. These gene networks can be programmed to detect a particular genetic sequence, which causes the paper to change color.
Upon learning about the Zika outbreak, the researchers decided to try adapting their device to diagnose Zika, which has spread to other parts of South and North America since the outbreak began in Brazil.
“In a small number of weeks, we developed and validated a relatively rapid, inexpensive Zika diagnostic platform,” says Collins, who is also a member of the Wyss Institute.
Collins and his colleagues developed sensors, embedded in the paper discs, that can detect 24 different RNA sequences found in the Zika viral genome, which, like that of many viruses, is composed of RNA instead of DNA. When the target RNA sequence is present, it initiates a series of interactions that turns the paper from yellow to purple.
Page 1 of 2
Suggested Items
HyRel Technologies Celebrates Future Innovators: Intern Program Empowers the Next Generation of Engineers and Professionals
05/01/2025 | HyRelHyRel Technologies, a global provider of quick turn semiconductor modification solutions, is proud to spotlight its 7th class of interns in partnership with Peoria Unified School District, featuring three outstanding young women who are already making meaningful contributions to the company's innovative engineering and operations efforts.
Absolute EMS Invests in the Next Generation of Engineering Talent
05/01/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is proud to announce the continued success of its initiative to recruit and develop young engineering talent.
Siemens Expands Global Electronics Intelligence Reach and Supplyframe Portfolio with Wevolver Acquisition
04/30/2025 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced its intention to acquire Wevolver, expanding its audience reach, enhancing the Supplyframe product portfolio, and combining digital marketing and integrated campaign programs that include go-to-market support and content creation.
Autodesk Donates $4.3 Million to Cornell University to Prepare students for an AI-powered future
04/24/2025 | AutodeskAutodesk announced a $4.3 million gift to Cornell University’s College of Engineering and College of Architecture, Art, and Planning (AAP) to help prepare students for the future of work in an increasingly AI-driven world. The investment will fund a new Autodesk Cornell Engineering Design and Make Space in Upson Hall.
Real Time with... IPC APEX EXPO 2025: IPC Mexico Building Community and Partnerships
04/17/2025 | Real Time with...IPC APEX EXPOLorena Villanueva highlights IPC Mexico's three-year journey focused on community building and partnerships with governments and educational institutions. Key milestones include collaboration agreements with state governments and universities to enhance the electronics industry. IPC Days promotes networking and education, while a partnership with UNAM aims to integrate IPC training into engineering programs. The discussion wraps up with congratulations on IPC Mexico's achievements and the launch of the Mexico pavilion at this year's show.