Researchers Integrate Diamond/boron Nitride Crystalline Layers for High-power Devices
May 11, 2016 | North Carolina State UniversityEstimated reading time: 2 minutes
Materials researchers at North Carolina State University have developed a new technique to deposit diamond on the surface of cubic boron nitride (c-BN), integrating the two materials into a single crystalline structure.
"This could be used to create high-power devices, such as the solid state transformers needed to create the next generation 'smart' power grid," says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and lead author of a paper describing the research.
"It could also be used to create cutting tools, high-speed machining and deep sea drilling equipment," Narayan says. "Diamond is hard, but it tends to oxidize, transforming into graphite - which is softer. A coating of c-BN would prevent oxidation. Diamond also interacts with iron, making it difficult to use with steel tools. Again, c-BN would address the problem."
C-BN is a form of boron nitride that has a cubic crystalline structure. It has similar properties to diamond, but holds several advantages: c-BN has a higher bandgap, which is attractive for use in high-power devices; c-BN can be "doped" to give it positively- and negatively-charged layers, which means it could be used to make transistors; and it forms a stable oxide layer on its surface when exposed to oxygen, making it stable at high temperatures. Earlier this year, Narayan unveiled a faster, less expensive technique for creating c-BN.
To create the epitaxial, or single crystal, diamond/c-BN structures, the researchers begin by creating a substrate of c-BN. This is done using the new technique Narayan published earlier this year. They then use a process called pulse-laser deposition - which is done at 500 degrees Celsius and an optimized atmospheric pressure - to deposit diamond on the surface of the c-BN. The pulse-laser technique allows them to control the thickness of the diamond layer.
"This is all done in a single chamber, making the process more energy- and time-efficient," Narayan says. "You use only solid state carbon and BN, and it's more environmentally benign than conventional techniques."
The researchers were also able to deposit diamond on the c-BN using the conventional chemical vapor deposition technique, which utilizes methane gas, hydrogen gas and a tungsten filament at 900 °C.
"The chemical vapor deposition approach works, but our pulsed laser deposition approach works much better, doesn't involve toxic gases, and can be done at much lower temperatures," Narayan says.
Narayan has co-founded a company, Q-Carbon LLC, which has licensed the technique and is working to commercialize it for multiple applications.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Revolutionizing PCB Manufacturing with Laser Technology from MKS' ESI
04/16/2025 | Real Time with...IPC APEX EXPOIn this interview, Barry Matties speaks with Casey Krueger from MKS' ESI. MKS' ESI focuses on laser-based micro machining for PCBs, especially in HDI and IC substrates. The Geode CO2 drilling system, launched in 2019, uses AOD technology to transform the market. Trends show a shift toward smaller vias for advanced packaging, with laser drilling concentrated in Asia. North America sees rising investments in laser tech, prioritizing quality, productivity, and energy efficiency, while AI integration boosts ESI's operations.
Real Time with... IPC APEX EXPO 2025: Pluritec's Expansion and Innovations in North America
04/08/2025 | Real Time with...IPC APEX EXPOMaurizio Bonati from Pluritec discusses the company's growth in North America. He highlights investments in infrastructure and customer support, along with product advancements like X-ray drilling machines and increased automation to boost production efficiency.
Real Time with... IPC APEX EXPO 2025: Schmoll America—Committed to Supporting Customers
03/31/2025 | Real Time with...IPC APEX EXPOKurt Palmer of Schmoll America and Stephan Kunz of Schmoll Maschinen GmbH had a great show, reporting solid attendance and good opportunities, as Schmoll America celebrates its first anniversary. With a booth full of equipment for attendees to see and touch, they showcased unique products like the Pico laser and X-ray machine, and discussed plans for a new facility.
Driving Innovation: Schmoll—Decades of Technology Evolution
03/24/2025 | Kurt Palmer -- Column: Driving InnovationIn this first column we look back at Schmoll’s history, building a business of manufacturing PCB drilling machines, examining key technological milestones, and demonstrating how challenges were addressed over the years. In future columns, we will discuss current industry challenges, technological advancements, and anticipated trends shaping PCB manufacturing. Looking back at the past and reflecting on the lessons learned is always an insightful and valuable journey.
Real Time with… IPC APEX EXPO 2025: Schmoll America Showcasing Four Advanced Machines
03/05/2025 | Real Time with...IPC APEX EXPOIn an expansive booth, Schmoll America is showcasing three advanced Schmoll machines and one from Impex, its partner company. Kurt emphasizes Schmoll's commitment to growth and excellence as Schmoll America approaches its first anniversary. Stop by booth 4123 to see the action.