Wearable Exosuits for Patients with Limited Mobility
May 19, 2016 | Harvard UniversityEstimated reading time: 3 minutes

The Wyss Institute for Biologically Inspired Engineering at Harvard University has entered into a collaboration with ReWalk Robotics Ltd., to accelerate the development of the Institute’s lightweight, wearable soft exosuit technologies for assisting people with lower limb disabilities. The agreement with ReWalk will help speed the design of assistive exosuits that could help patients suffering from stroke and multiple sclerosis (MS) to regain mobility.
"This is a very exciting day for the soft exosuit technology," said Conor Walsh, Ph.D., who is a Core Faculty Member at the Wyss Institute, the John L. Loeb Associate Professor of Engineering and Applied Sciences at Harvard John A. Paulson School of Engineering and Applied Sciences, and Founder of the Harvard Biodesign Lab. "ReWalk brings commercialization expertise and experience in the area of wearable robotics and complements our translation-focused research. Ultimately this agreement paves the way for this technology to make its way to patients."
The soft exosuit – which is a soft wearable robot that is the first of its kind – was developed at the Wyss Institute by Walsh and his team through extensive prototyping that included the involvement of roboticists, mechanical and biomechanical engineers, apparel designers, and software engineers. Walsh's collaborators also include Terry Ellis and Ken Holt, both faculty members at Boston University’s Department of Physical Therapy & Athletic Training.
"What makes the soft exosuit’s development so unique is the extreme multi-disciplinary nature of the work. In addition to our varied technical expertise as a team, our research with voluntary study participants has been central to our understanding of how we need to design and build these exosuits", said Kathleen O’Donnell, who has been leading the team at the Wyss Institute with Walsh. Over the course of its development, the soft exosuit has been the catalyst for entirely new forms of functional textiles, flexible power systems and control strategies that integrate the suit and its wearer in ways that mimic the natural biomechanics of the human musculoskeletal system.
"There is a great need in the health care system for lightweight, lower-cost wearable exoskeleton designs to support stroke patients, individuals diagnosed with multiple sclerosis and senior citizens who require mechanical mobility assistance. This collaboration will help create the next generation of exoskeleton systems, making life-changing technology available to millions of consumers across a host of patient populations," said Larry Jasinski, CEO of ReWalk.
Using form-fitting, fabric-based designs that are lightweight and non-restrictive, the Wyss Institute’s soft exosuit uses compact, powerful actuators packaged in a belt to provide assistance to the wearer’s legs in a physiologically relevant manner. These enhanced movements have the potential to assist wearers in walking with greater stability and metabolic efficiency, which could prevent injury and reduce fatigue.
Most currently-marketed exoskeletons are rigid systems providing structural support and large assistance to patients with extremely severe movement disabilities, for example due to spinal cord injuries. For many stroke, MS, and elderly patients who can move partially on their own, the assistive and elegant movements of the lighter weight, flexible, soft exosuit could be used to overcome mobility limitations in their lower extremities. Currently in the United States, there are an estimated 3 million stroke patients and 400,000 MS patients who are suffering from limited mobility due to lower limb disabilities.
"The soft exosuit is a wonderful example of how understanding how living systems work – in this case the movement and control of the human body – can inspire design of an innovative wearable robotic technology that has the potential to change the future of medicine. It is also tremendously gratifying to see how this collaboration between Rewalk Robotics and Conor Walsh’s lab has developed and been nurtured at the Wyss Institute, given our focus on translating technologies from the laboratory and into the marketplace,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and also Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.
Harvard’s Office of Technology Development worked with the Wyss Institute to structure this collaboration with ReWalk, which includes a license for intellectual property and funding for the continued development at the Institute, towards bringing this new wearable therapeutic device into the marketplace. Additional funding for the Wyss Institute’s exosuit came from the National Science Foundation, the Harvard University Star Family Challenge, and the Defense Advanced Research Projects Agency's Warrior Web program, which seeks to develop technologies to mitigate musculoskeletal injuries among military Service members while improving performance.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium Corporation Earns Mexico Technology Award for New Halogen-Free Flux-Cored Wire
09/18/2025 | Indium CorporationIndium Corporation recently earned a Mexico Technology Award for its new high-reliability, halide- and halogen-free flux-cored wire, CW-807RS, which improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
Blaize, Technology Control Company Partner to Power Saudi Arabia’s Next-Generation AI Innovation Infrastructure
09/17/2025 | BUSINESS WIREBlaize Holdings, Inc., a leader in programmable, energy-efficient edge AI computing, and Technology Control Company (TCC), a leading technology solutions provider in the Kingdom of Saudi Arabia (KSA), announced a strategic partnership to advance Saudi Arabia’s AI innovation infrastructure and accelerate its digital transformation goals.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
On the Line With… Podcast: UHDI and RF Performance
09/17/2025 | I-Connect007I-Connect007 is excited to announce the release of a new episode in its latest On the Line with... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).