Fujitsu Develops Field Engineering Technology to Rapidly Provide IoT Services
May 25, 2016 | ACN NewswireEstimated reading time: 4 minutes
1. Radio wave simulation technology that can simply and automatically determine installation points for wireless devices
Fujitsu Laboratories has simplified the handling of radio wave simulations, which previously required huge amounts of time and effort, with the following two technologies, which can simply and automatically determine installation points for wireless devices, even without wireless device expertise.
1) 3D spatial digitizing technology:
Fujitsu Laboratories has developed technology to automatically create the 3D layout data necessary for radio wave simulations just by measuring with a laser scan from a few points around the site, and then automatically correcting distortions and smoothly merging measurement data from multiple scans. With this technology, the time required to create the layout data is shortened from around one week when creating it by hand to around two hours, including measurement time.
2) Moving body modeling technology:
In order to reflect the impact of people's movements numerically, it was previously necessary to run many simulations, changing the placement of people a bit each time. Now, by automatically measuring the number of people coming and going using technology developed by Fujitsu Laboratories that recognizes the flow of people from video(1), making patterns for different numbers of people, and using these in simulations, simulations that might have taken three days can now be done on an ordinary PC in less than fifteen minutes.
Figure 2: Radio wave simulation technology
2. Radio wave interference visualization technology
Fujitsu Laboratories has developed technology that automatically recognizes and displays wireless communications actually being used at sites where IoT devices are installed, and visualizes the state of signal congestion for each channel and location, and for each communications standard. This makes it possible, even for non-experts, to determine appropriate installation locations for IoT devices, data transmission time spacing, and channel settings.
This technology recognizes wireless standards (such as Wi-Fi, Bluetooth and ZigBee) through a unique computation method of correlation coefficient between received signals and signal patterns prepared for each wireless standard. Previous technology would perform a product-sum operation with signal patterns prepared for each standard, after frequency correction of the received signal, but this technology uses the fact that, when the received signal differs from the prepared signal pattern, the results of multiplication of the signal before frequency correction have high randomness to achieve high recognition performance, successfully improving recognition sensitivity to twice that of previous methods.
Figure 3: Radio wave interference visualization technology
Effects
With this newly developed technology, Fujitsu Laboratories has reduced the time required to install IoT devices at a site to one-third that of previous methods.
This means that, because the installation of wireless devices, which created issues for implementing and operating an IoT system, and radio wave congestion and interference countermeasures have become easier to do, when using an IoT system with the goal of achieving operational efficiencies or to create value, customers can greatly reduce the time needed before they start actual operations. In addition, even after starting operations, these technologies also make it possible to operate stably, without any major trouble causing operations to stop.
Page 2 of 2Suggested Items
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.
Global Citizenship: The Global Push for Digital Inclusion
07/16/2025 | Tom Yang -- Column: Global CitizenshipIt can be too easy to take the technology at our fingertips for granted: high-speed internet, cloud-based collaboration, and instant video calls across continents. Yet, for billions of people, access to these digital tools is a distant dream. As a global community, we must ensure that technology is available to all. Here is how technology is bridging physical, economic, and educational gaps in underserved regions and profoundly reshaping lives.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.