New Compound Switches Between Liquid and Solid States when Exposed to Light or Heat
May 31, 2016 | Kobe UniversityEstimated reading time: 1 minute

A research group led by Professor MOCHIDA Tomoyuki (Kobe University Graduate School of Science) and Dr. FUNASAKO Yusuke (Tokyo University of Science, Yamaguchi) has developed a metal-containing compound which transforms into a solid when exposed to light and returns to liquid form when heated. This substance could potentially be used for photolithography technology, such as fabricating printed circuits, among other applications.
Coordination polymers are solids with various useful applications. In recent years, research into coordination polymers has increased, and scientists have developed many ways to synthesize them, but most of these methods rely on chemical reactions in solutions. This is the first example of a method that creates coordination polymers by exposing liquids to light.
Techniques that can control the properties of materials through external stimuli such as light and heat are extremely important in creating materials for use in electronics. For example, materials which solidify when exposed to light (photosensitive resins) are used in creating printed circuits, but it is difficult to reuse these materials.
Professor Mochida’s research group proposed that if they could control the binding process between metal ions and organic molecules using heat and light, they could create a material that drastically changes its properties when exposed to external stimuli. The group became the first in the world to develop an ionic liquid from a ruthenium complex with cyano groups. This liquid is colorless, clear, non-volatile, and does not freeze even at -50℃. If you apply ultraviolet light to the liquid for a few hours, it changes into an amorphous coordination polymer, and if you heat this solid for one minute at 130℃, it returns to its original ionic liquid form.
In this way, by applying light and heat, the group realized a reversible transformation between an ionic liquid and a solid coordination polymer — two substances with completely different structures and different chemical properties.
This research has led to the successful creation of a reusable photocurable liquid. It can potentially be applied to printed circuit boards, 3D printing, and adhesives. Professor Mochida comments, “We plan to continue research on the molecular design of this substance, to reduce its response time, and look into creating more functions for this coordination polymer.”
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.
Real Time with... IPC APEX EXPO 2025: Winner of the IPC Best Student Poster Award
04/29/2025 | Real Time with...IPC APEX EXPOSebastian Carrillo, winner of the Best Student Technical Poster Award, shares insights on his research in nanotechnology and plasmonics. His work on a metal insulator nano array focuses on light-matter interactions at the nanoscale. With advancements in manufacturing, applications include sensing technologies and photovoltaic systems. Sebastian discusses his project involving simulations and optical experiments. His career goals are in research, and he encourages students to seize academic opportunities.
ITRI Named a Top 100 Global Innovator for the Ninth Time
04/28/2025 | PRNewswireThe Industrial Technology Research Institute (ITRI) was officially honored at the 2025 Top 100 Global Innovators Award Ceremony hosted by Clarivate in Taipei.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.