New Low-Defect Method to Nitrogen Dope Graphene Resulting in Tunable Bandstructure
June 7, 2016 | NRLEstimated reading time: 3 minutes
An interdisciplinary team of scientists at the U.S. Naval Research Laboratory (NRL), Electronics Science and Technology and Materials Science and Technology Divisions, has demonstrated hyperthermal ion implantation (HyTII) as an effective means of substitutionally doping graphene — a hexagonally-arranged single-atomic thickness carbon sheet — with nitrogen atoms. The result is a low-defect film with a tunable bandstructure amenable to a variety of device platforms and applications.
Schematic displaying the HyTII process depicting nitrogen (N+) incident with a graphene-on-copper (Cu) sample. The three-graphene flake schematics depict the type of modification resulting from N-HyTII processing over the labeled energy range. (U.S. Naval Research Laboratory)
The research shows that the HyTII method delivers a high degree of control including doping concentration and, for the first time, demonstrates depth control of implantation by doping a single monolayer of graphene in a bilayer graphene stack. This further demonstrates that the resulting films have high-quality electronic transport properties that can be described solely by changes in bandstructure rather than the defect-dominated behavior of graphene films doped or functionalized using other methods.
“Since the discovery that a single atomic layer of sp2 bonded carbon atoms, termed graphene, could be isolated from bulk graphite, a plethora of remarkable electronic and spintronic properties have emerged,” said Dr. Cory Cress, materials research engineer, NRL. “However, few applications are forthcoming because graphene lacks a bandgap and its doping is difficult to control, rendering graphene devices competitive only for highly-specialized device technologies.”
Doping or chemical functionalization may add a usable transport gap. However, these methods tend to produce films that are plagued by unintentional defects, have low stability, or non-uniform coverage of dopants and functional groups, which all greatly limit their usefulness and degrade the intrinsic desirable properties of the graphene film.
As an alternative, NRL scientists leveraged their radiation-effects background to develop a hyperthermal ion implantation system with the necessary precision and control to implant nitrogen (N+) into graphene achieving doping via direct substitution.
“After many months of developing the system, the feasibility of the technique really depended on the first experiment,” Cress said. “In our study, we determined the range of hyperthermal ion energies that yielded the highest fraction of nitrogen doping, while minimizing defects, and we were successful in confirming the inherent depth control of the HyTII process.”
To achieve the latter, the scientists implemented a bilayer graphene material system comprising a layer of natural graphene, with mostly carbon-12 (12C) atoms, layered on graphene synthesized with greater than 99 percent carbon-13 (13C). This bilayer material provided a means to identify which layer they were modifying when analyzed with Raman spectroscopy.
Graphical Plot: This plot displays the characteristic lengths of the system as a function of carrier density for three different implantation doses. The dotted line separates the weak localization regime (semiconductor) from the strong localization regime (insulator). As dose (measured by the Raman D/2D ratio), therefore nitrogen content, increases, the transition from weak to strong localization is suppressed near the charge neutrality point. These analyses, along with other measurements, indicate that the nitrogen-doped films are low-defect and that the bandstructure is tunable. (U.S. Naval Research Laboratory)
Devices made from films processed with N+ in the range of optimal doping show a transition from strong to weak localization that depends on implantation dose, indicating the implanted nitrogen’s ability to alter the intrinsic properties of the film. As further evidenced by the high electronic quality of the implanted devices over similar adatom-doped devices, the scientists found that the temperature dependence can be fit by a model that takes into account both band effects due to the substitutional doping and insulator-like effects due to defect formation, with the band effects observed to be the dominant component.
Surprisingly, the researchers found that a higher amount of nitrogen doping prevents the crossover to insulating behavior near the charge neutrality point. Defects appear to dominate the behavior only at large implantation energies, where defects are more probable, further demonstrating the differences between true-doped films and previous defective/doped films.
“Our measurements of these devices strongly indicate that we have finally fabricated a graphene film with a tunable bandgap, low defect density, and high stability,” explains Dr. Adam L. Friedman, research physicist, NRL. “We therefore hypothesize that HyTII graphene films have great potential for electronic or spintronic applications for high-quality graphene where a transport or bandgap and high carrier concentration are desired.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.