Nanogenerator Powers Implantable Heart Monitor
June 7, 2016 | American Chemical Society (ACS)Estimated reading time: 1 minute

Implantable electronic devices/systems are crucial medical technologies for monitoring, measuring, and soliciting physiological responses in vivo.
Over the past decade, the increased in vivo stability, miniaturization, and lower energy requirement of electronics have hugely promoted the applications of physiological signal sensors, intelligent gastric and cardiac pacemakers, cochlear implants, and deep brain stimulators; millions of people rely on such implantable medical devices for improved quality of life.
However, one of the key challenges for in vivo devices is the battery-based power supply, which has limited energy density, short lifetime, chemical side effects, and a large volume. A surgery is unavoidable for replacing the power source, which may cause suffering, risk, and high cost.
Researchers from the U.S. and China have now demonstrated an implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting, which has a multilayered structure and exhibits outstanding in vivo performance and stability.
A self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.
Driven by the heartbeat of an adult Yorkshire porcine, the open-circuit voltage can reach up to 14 V, and the corresponding short-circuit current can be as high as 5 µA.
The team has reported their findings in the June 2, 2016 online edition of ACS Nano ("In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator").
Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated and the electrical signal associated with the in vivo heartbeat was successfully transmitted, showing its feasibility for real-time remote cardiac monitoring.
This work demonstrates significant progress for iTENG as a power source for implantable medical devices and its great potential for fabricating a self-powered, wireless healthcare monitoring system.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/02/2025 | Marcy LaRont, PCB007 MagazineIn our industry, this week’s must-read features include CEE’s Tom Yang and his perspective on having a global business amidst tariff talk and other challenges. Joe Fjelstadt talks to the “Flexperts,” Nick Koop of TTM and Mark Finstead of Flexible Circuit Technologies. Nolan Johnson interviews the McGucken Group about the importance of empathic leadership in BANI times. NCAB’s Ryan Miller writes about reliability and compliance for building PCBs for medical applications, and surprise, more news from Siemens.
Fresh PCB Concepts: Key Considerations for Reliability, Performance, and Compliance in PCBs
05/01/2025 | Team NCAB -- Column: Fresh PCB ConceptsAs a field application engineer with many years of experience, I’ve conducted thousands of designs for manufacturing (DFM) analyses on printed circuit boards (PCBs). From basic one-layer boards to complex high density interconnect (HDI) designs, I’ve provided technical advice across a wide spectrum of technologies.
Real Time with... IPC APEX EXPO 2025: Exploring LCP Materials with Matrix Electronics
04/15/2025 | Real Time with...IPC APEX EXPONolan Johnson introduces Robert Berg from Matrix Electronics, highlighting the company's focus on high-speed, low-loss flexible materials, especially LCP materials. LCP (liquid crystal polymer) is a thermal plastic with unique properties that make it ideal for advanced PCB applications. Despite processing challenges, its stability and FDA approval for medical use drive interest in aerospace and medical markets.
Flex Opens New Product Introduction (NPI) Center Serving Healthcare Customers in North America
03/25/2025 | FlexFlex announced the opening of its new product introduction (NPI) center near Boston, Mass., serving healthcare customers.
DELO Releases IBOA-free Medical Adhesive for Glucose Monitoring Sensors and Other Wearables
03/14/2025 | DELODELO has released a new light-curing medical-grade adhesive engineered with nontoxicity in mind. DELO PHOTOBOND MG4047 is designed for wearable medical applications such as glucose monitoring sensors (CGM). Its chemical properties and impermeable characteristics help prevent skin irritation in cases of media influence such as rain or sweat.Teaser