LISA Pathfinder Mission Paves Way for Space-based Detection of Gravitational Waves
June 8, 2016 | NASAEstimated reading time: 5 minutes
LISA Pathfinder, a mission led by the European Space Agency (ESA) with contributions from NASA, has successfully tested a key technology needed to build a space-based observatory for detecting gravitational waves. These tiny ripples in the fabric of space, predicted by Albert Einstein a century ago, were first seen last year by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO).
Seismic, thermal, and other noise sources limit LIGO to higher-frequency gravitational waves around 100 cycles per second (hertz). But finding signals from more exotic events, such as mergers of supermassive black holes in colliding galaxies, requires the ability to see frequencies at 1 hertz or less, a sensitivity level only possible from space.
A space-based observatory would work by tracking test masses that move only under the influence of gravity. Each spacecraft would gently fly around its test masses without disturbing them, a process called drag-free flight. The primary goal of ESA's LISA Pathfinder mission is to test current technology by flying around an identical pair of 1.8-inch (46 millimeter) cubes made of a gold-platinum alloy, a material chosen for its high density and insensitivity to magnetic fields.
Scientists say the results are nothing short of astonishing. Non-gravitational forces on the cubes were reduced to levels far below the project's original requirements and approach the level of control needed for a full-scale observatory.
"The measurements have exceeded our most optimistic expectations," said Paul McNamara, the LISA Pathfinder project scientist at ESA's Directorate of Science, Noordwijk, the Netherlands. "We reached the level of precision originally required for LISA Pathfinder within the first day, and so we spent the following weeks improving the results a factor of five better."
"LISA Pathfinder was always intended as a stepping stone to the level of performance needed for a full-scale gravitational wave observatory, but these results tell us we’ve nearly made the full jump. A full-scale observatory with LISA Pathfinder’s performance would achieve essentially all of the ultimate science goals," said Ira Thorpe, a team member at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "That's amazing in itself, and data from this mission will help us build on an already impressive foundation."
The test masses are housed in an experiment called the LISA Technology Package (LTP), which was built by a consortium of European national space agencies and ESA. The LTP uses a high-resolution laser interferometer to determine the positions of the test masses and relays the information to the spacecraft's Drag-Free and Attitude Control System, which then applies minute bursts from microthrusters. In this way, the spacecraft flies in formation with the cubes and isolates them from external forces. The results show that LISA Pathfinder reduced non-gravitational forces on the test masses to a level about 10,000 times smaller than drag-free control technologies used on previous science missions.
At frequencies between 1 and 60 millihertz, control over the test masses is affected by a small number of gas molecules bouncing off the cubes. The effect became less prominent over time as molecules escaped into space, and it is expected to improve further in the following months.
Below 1 millihertz, researchers measured a small centrifugal force acting on the test masses. This arose from a combination of the shape of the spacecraft's orbit and noise from star trackers used to maintain LISA Pathfinder's orientation. This component would be reduced in a multi-spacecraft observatory, where each spacecraft would have its own test mass and be laser-linked to others millions of miles away.
Even cosmic rays penetrating the spacecraft can affect the results by transferring electrical charge to the test masses. Left unchecked, the accumulating charge would produce enough force on the cubes to disturb measurements. LISA Pathfinder is testing a system never before used in space that shines ultraviolet light on the cubes to remove charge without contacting them.
The team can even see the gravitational effect on the cubes caused by the reduced mass of thruster fuel as it is consumed by spacecraft maneuvers.
"These impressive results show that LISA Pathfinder has successfully demonstrated some of the advanced technologies needed for a future space-based gravitational wave observatory," said Paul Hertz, director of NASA's Astrophysics Division in Washington. "ESA is currently planning such a mission for the 2030s, and NASA is working closely with ESA in exploring how we might continue the successful LISA Pathfinder partnership in that mission."
LISA Pathfinder also carries a NASA experiment called the ST-7 Disturbance Reduction System. Managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, the experiment combines novel "electrospray" thrusters with drag-free control software provided by Goddard on a dedicated computer. Developed by Busek Co. Inc. in Natick, Massachusetts, with technical support from JPL, the thrusters generate force by electrically charging small liquid droplets and accelerating them through an electric field in much the same way as an ink jet printer propels ink droplets onto paper. The experiment, which will use information on the position of the test masses provided by the LTP to determine how to move the spacecraft, is expected to begin science operations in early July.
LISA Pathfinder was launched on Dec. 3, 2015, and began orbiting a point called Earth-sun L1, roughly 930,000 miles (1.5 million kilometers) from Earth in the sun's direction, in late January 2016. LISA stands for Laser Interferometer Space Antenna, a space-based gravitational wave observatory concept that has been studied in great detail by both NASA and ESA.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
TTCI Brings Hands-On Test Engineering and IPC Training Expertise to PCB Carolina 2025
10/31/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB Carolina on Wednesday, November 12, 2025, at the McKimmon Center at NC State University in Raleigh, North Carolina. Attendees can visit Table 4 to say hello to Bert Horner and Bill Graver, and learn more about their test engineering services and technical training programs.
GEN3 Systems to Showcase Advanced Reliability Test Solutions at productronica 2025 in Munich
10/29/2025 | Gen3 SystemsGEN3 a leader in innovative reliability test solutions, is excited to announce its participation at productronica 2025, the world’s premier trade fair for electronics development and production.
Unlocking the Promise of AI in Electronics Manufacturing
10/29/2025 | Shobhit Agrawal, Keysight TechnologiesThe electronics manufacturing industry is rapidly evolving as more complicated products are introduced in the production lines, which require technological advancements even in the production processes. The requirements for production that is efficient, product quality that is greater, and product life cycles that are shorter are more crucial than ever before. In the electronic device life cycle, from design to maintenance, test phases have a significant impact on the economy of the company. Test processes are closely linked to the production volume and impacted by the complexity of the product. For businesses to maintain their competitive edge, they need to adopt innovative solutions and redefine processes.
New Episode of Voices of the Industry Podcast Explores Breakthroughs in Test and Inspection
10/22/2025 | I-Connect007In this episode of Voices of the Industry, “Testing Innovation: Advances in Test, Inspection & Failure Analysis,” host Nolan Johnson speaks with Rob Boguski, president of Datest. Together, they explore the expanding world of circuit testing, inspection, and failure analysis, areas that are experiencing a surge in technological capability and sophistication. As Johnson and Boguski discuss, today’s test companies are performing analyses and precision methods that would have seemed impossible just a decade ago.
HT Global Circuits Adds Two atg Luther & Maelzer Flying Probe Test Systems
10/15/2025 | atg Luther & Maelzer GmbHAtg Luther & Maelzer GmbH, a leading supplier of electrical testing solutions for the PCB industry, and IEC USA, a distributor of consumables, equipment, and services in the North American PCB market, confirm the order for high-speed bare board testing technology.