Service Robots are Coming to Help Us
June 10, 2016 | NSFEstimated reading time: 5 minutes

In the not so distant future, robots could help us do everyday tasks like fetching the remote, offering a helping hand to walk us from room to room, or carrying our food or water when our hands are full. Some researchers say that robots will be in our homes, hospitals and eldercare facilities in the next decade.
Industry and university partnerships through the National Science Foundation (NSF) Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) program are working to advance, adapt and integrate technologies like robots into human-centered smart service systems. The program gives scientists the opportunity to partner with industry to test their lab-created technologies in everyday settings, and learn from the interaction of humans and technology.
Since 2014, the NSF has invested in 21 three-year, $700,000 to $1 million projects involving smart service systems. Those investments support innovative new partnerships that advance novel technologies. (An additional 11 awards will be made this summer).
"The PFI:BIC program brings us in close partnership with nurse scientists and industrial systems integrators," said Dan Popa of the University of Louisville, principal investigator on a PFI:BIC project.
As a result of those partnerships, Popa said, "Our research is channeled from the start of the project to challenges relevant to nursing environments, including patient and nurse preferences, tasks in which they require help from the robot, and so on. We believe our research will lead to robotic solutions that are better conceived and may be commercialized because they solve a market need, and consider manufacturing and operational constraints from conceptualization."
Popa has partnered with Texas Health Resources, the University of Texas at Arlington and defense contractors RE2 Robotics and QinetiQ North America to design a robot that could navigate hospital rooms.
The team is adding new sensors and controllers to robots that were once used in Iraq and Afghanistan to disassemble improvised explosive devices (IEDs) to "make them more intelligent for use around people." Once updated, these robots will become an Adaptive Robotic Nursing Assistant (ARNA) that will assist nurses -- not replace them, Popa stressed.
Technology that works with humans has the best effect, said PFI:BIC Program Director Alex Medina-Borja.
"Robots can perform certain tasks with precision while humans can make more complex decisions and actions," she said.
A path to commercialization
"We are looking at applications and future commercialization. The economic motivator is very significant," said Popa, who would like to see at least one Adaptive Robotic Nursing Assistant in every hospital and in homes. "If the cost is low enough, imagine in five to ten years, going to Sears and getting one for your house and your parents?"
The first iteration of the robotic nursing assistant will be a "patient sitter," located in the same room as a long-term care patient. It would fetch items, visually monitor the patient, check vitals, alert the nurse if a patient gets out of bed, or read to the patient. The second application would consist of a "patient walker" that would walk with the patient, assess the risk of falls during the walk, push an IV pole or a wheelchair, and guide a patient to a desired location.
Popa and team are using adaptive interface technology that was conceived and demonstrated in the lab over the last four years through NSF's investment as part of the National Robotics Initiative. The National Robotics Initiative was launched in 2011 to accelerate the development and use of robots that work beside or cooperatively with people.
The walker robot will not come preprogrammed. Instead, it will adapt to the specific needs of the patient and be able to tell if a patient was strong or weak and adjust to his or her specific needs. The robot will also have "skin" with pressure sensors and a rubber-like texture, making it safe for contact with human skin and able to lessen the chance of tears, cuts and pinch points.
Right now, two nurse scientists advise the team on requirements. The team will test and design a new model of the robot this year and build the next version in 2017 in Louisville. In 2018, they will begin testing in Texas Health hospitals.
Page 1 of 2
Suggested Items
IIT Kharagpur Forge Strategic Partnership with Swansea University in Advance Smart Manufacturing and Materials Research
06/18/2025 | IIT KharagpurIn a significant step towards global academic and industrial collaboration, Swansea University and the Indian Institute of Technology Kharagpur (IIT KGP) signed a Memorandum of Understanding (MoU) to deepen research partnerships, promote academic exchange, and foster innovation in advanced manufacturing and materials engineering.
Delta Thailand Reinforces 4IR Leadership and Smart Energy Vision at i-Forum 2025
06/02/2025 | Delta ThailandDelta Thailand reaffirmed its role in advancing industrial automation and sustainable innovation at i-Forum 2025. Held on May 9 by the Faculty of Engineering at Kasetsart University in Bangkok, the forum focused on the theme “Leading the 4IR Revolution: Key Lessons from the WEF Global Lighthouse Network.”
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
SEMI, Purdue University Launch AI and Data Analysis Online Courses
05/22/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, today announced it has partnered with Purdue University to launch an online course series focused on artificial intelligence (AI) and data analysis techniques for the semiconductor industry.