-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
New Solar Absorber Could Improve Efficiency of Solar Thermal Technology
June 15, 2016 | MITEstimated reading time: 3 minutes
A team of researchers at MIT and the Masdar Institute of Science and Technology has discovered a low-cost way to significantly increase the amount of solar energy that can be converted into heat, via a device called a solar absorber. This advance should help make sustainable technologies that rely on solar heat more efficient and affordable.
“Our research team has developed a simple and cost-effective fabrication technique to create solar absorbers that can harness a greater share of the solar spectrum, thus increasing their efficiencies, while also maintaining low emission levels,” says TieJun Zhang, assistant professor of mechanical and materials engineering at the Masdar Institute, a graduate-level engineering university in the United Arab Emirates.
Zhang co-authored the paper that describes this research, which was published this month in the journal Advanced Optical Materials. The work contributes to a larger Masdar Institute-MIT research project, which is aimed at developing a solar-powered combined electrical power plant and cooling system.
The MIT and Masdar Institute Cooperative Program helped launch the Masdar Institute in 2007. Research collaborations between the two institutes address global energy and sustainability issues, and seek to develop research and development capabilities in Abu Dhabi.
Nicholas X. Fang, professor of mechanical engineering at MIT and co-principal investigator of the project, said: “We are very excited that this MIT-Masdar Institute collaboration has led to new insights in the emerging field of plasmonics, which quantifies the interactions between the electromagnetic field and free electrons in a metal. By trapping sunlight with plasmonics, the solar absorber developed by our team can achieve higher efficiency levels. We look forward to testing the overall solar conversion efficiency of the coating materials in the next step of our research.”
The team’s novel fabrication technique involves patterning a solar absorber with tiny holes with diameters less than 400 nanometers — roughly 1/200 the width of a human hair — cut into the absorber at regular intervals.
The tiny holes penetrate the entire absorber, greatly enhancing the range of solar energy that can be absorbed. Close to 90 percent of all the wavelengths of light that reach Earth’s surface are absorbed by the device. Unlike traditional solar absorbers, this absorber requires very little material and consists of only two layers: a semiconductor film and a reflective metallic layer, with a total thickness of 170 nanometers.
“This idea can be applied to most conventional solar absorbers. With this unique patterning, the absorbers can be boosted to harvest more solar energy from the ultraviolet and visible regions of the electromagnetic spectrum,” says Masdar Institute postdoc Jin You Lu, the paper’s lead author along with MIT postdoc Sang Hoon Nam.
To optimize a solar absorber's efficiency, it is desirable to maximize the solar absorption and reduce the thermal radiation of heat from the absorber. However, it is challenging to create a solar absorber that can absorb a high level of sunlight while maintaining low thermal radiation losses. As the solar absorber takes in more energy, its temperature increases, causing it to lose energy in the form of thermal radiation.
The sweet spot of a solar absorber then, is that point when optimal levels of sunlight are absorbed with the least amount of energy escaping back into the atmosphere through radiation. Lu believes they may have found this sweet spot.
“By taking advantage of the ultrathin film coatings and patterning, we are able to maximize the absorption spectrum while keeping the solar absorber’s emission levels quite low,” Lu explained.
The team is now working to optimize the system with alternative metals such as aluminum, copper, or silver, for the reflective metallic layer, which will reduce the costs of the solar absorber even further.
Suggested Items
Designers Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
01/07/2025 | Vern Solberg -- Column: Designer's NotebookTo accommodate new generations of high I/O semiconductor packaging, printed circuit board fabrication technology has had to undergo significant changes in both the process methods and the criteria for base material selection and construction sequence (stackup). Many of the new high-function multi-core semiconductor package families require more terminals than their predecessors, requiring a significantly narrower terminal pitch. Interconnecting these very fine-pitch, high I/O semiconductors to the PCB is made possible by an intermediate element referred to as an interposer.
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... High Performance Materials, Chapter 4
01/02/2025 | I-Connect007In Chapter 4, Michael Gay discusses the two main types of copper foil used for PCB boards today: electrodeposited (ED) foil and rolled annealed (RA) foil. He also explains the pros and cons of each, and provides an update of the latest innovations in copper foil technology.
Connect the Dots: Designing for Reality—Solder Mask and Legend
01/02/2025 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we discussed the strip, etch, and strip process. At this point, we have a functioning board, but we still need to protect the PCB from environmental effects and document the circuit components. This brings us to the solder mask and legend phase of production.
Global PCB Connections: Following DFM Rules Leads to Better Boards
12/18/2024 | Jerome Larez -- Column: Global PCB ConnectionsAs a PCB field applications engineer, ensuring smooth communication between PCB designers and fabricators is one of my frequent challenges. A critical part of that dialogue is design for manufacturing (DFM). Many designers, even experienced ones, often misunderstand or overlook important DFM considerations. They may confuse design rules with manufacturing minimums, leading to technically feasible designs that are difficult or costly to produce. In this column, I will clarify some common DFM guidelines and help designers understand the difference between “design rules” and “minimums” while sharing best practices that will simplify the production process and ensure the highest quality PCB.
Sayonara to the Last Standing Copper Foil Plant in North America
12/17/2024 | Marcy LaRont, I-Connect007In July 2021, PCB007 Magazine published an interview with Michael Coll and Chris Stevens of Nippon Denkai about the new acquisition by Nippon Denkai of the last-standing ED foil manufacturer in North America. The plant in Augusta, Georgia, was formerly owned by Oak Mitsui, Inc. and had been purchased by Nippon Denkai the previous March, after which significant investment was made with the expectation of providing more jobs.