Proper Breeding Ground for Germanene
June 27, 2016 | University of TwenteEstimated reading time: 2 minutes

Graphene may currently be the best known ‘two dimensional’ material, its new cousin germanene seems to have properties that are even more attractive for application in electronics. For this, germanene has to grow in a one atom layer on top of a proper carrier - substrate. Scientists of the MESA+ Institute for Nanotechnology of the University of Twente managed to grow germanene on a semiconductor material, preserving the unique properties.
Germanene is a one atom thick sheet of germanium, in a honeycomb structure. It has clear similarities with graphene, the material that induced massive research activity worldwide, especially after 2010’s Nobel Prize. A major difference between graphene and germanene is the ‘band gap’, a property well-known in semiconductor electronics: thanks to this ‘jump’ of energy levels that electrons are allowed to have, it is possible to control, switch and amplify currents. Graphene had a very small band gap that can only be measured at very low temperatures, germanene shows a band gap that is significantly larger. Previous attempts to grow germanene, however, show that these attractive properties seem to vanish when it is grown on a metal surface: a good conductor of current. To prevent this, the UT scientists chose the semiconductor MoS2 as the substrate material.
Islands
Under ultra-high vacuum conditions, germanene indeed grows on the semiconductor. At first, the scientists observed islands at the locations where MoS2 had crystal defects, after that the germanene is spreading out covering a larger surface. An exciting question is, if the desired properties remain intact. First measurements show that the typical 2D properties and band gap are present, further low temperature measurements are needed to confirm that germanene operates in the desired way: the inner part would work as an insulator, while conducting channels are formed at the edges.
Sandwich
The other UT scientists did quantum mechanical calculations on the molybdenum-disulfide combination. They, for example, looked at the direction of growth, to be able to optimize the process. The theoretical group went one step further, by not only investigating the bilayer of molybdenum-disulfide, but als covering the germane with molybdeendisulfide. This prevents germanene from rapid oxidation. Calculations show that the sandwich construction has even better performance when it comes to the band gap.
Both publications show dat germanene, grown on molybdenum-disulfide is an important first step towards new electronic devices or unsuspected combinations with conventional devices. ‘Spintronics’, based on the spin movement of electrons, seems to be an attractive application area for germanene. Electrons with spin up and electrons with spin down have separate conducting channels on the edges of germanene. Harold Zandvliet recently received a grant for further research on this promising effect.
Suggested Items
Tata Electronics, Bosch Sign MoU for Strategic Collaboration in Electronics and Semiconductor Manufacturing
07/18/2025 | Tata ElectronicsTata Electronics, a leading player in the Indian electronics and semiconductor manufacturing sector, and Robert Bosch GmbH, a leading global supplier of technology and services, announced that they have signed a Memorandum of Understanding (MoU) to collaborate on several key areas within the electronics and semiconductor industries.
Fraunhofer IPMS, DIVE Optimize Semiconductor Processes with Cutting-Edge Measurement System
07/17/2025 | Fraunhofer IPMSThe Fraunhofer Institute for Photonic Microsystems IPMS, in collaboration with DIVE imaging systems GmbH, has achieved a major milestone in resource-efficient semiconductor manufacturing.
TI Honored by Volkswagen Group for Operational Excellence
07/16/2025 | Texas InstrumentsTexas Instruments (TI) received the prestigious “Operational Excellence” award at the annual Volkswagen Group Award 2025 in Wolfsburg, Germany.
Report: Broadcom Scraps $1 Billion Chip Investment in Spain
07/15/2025 | I-Connect007 Editorial TeamAmerican chipmaker Broadcom has pulled out of plans to invest in a microchip plant in Spain. According to a July 14 Reuters report, Europa Press, quoting anonymous sources, stated the action followed collapsed government talks but gave no further information.
Siemens Collaborates with SK keyfoundry to Launch 130nm Automotive Power Semiconductor Calibre PERC PDK
07/15/2025 | SiemensSiemens Digital Industries Software announced that SK keyfoundry, in collaboration with Korea Siemens EDA, has launched a 130nm automotive PDK (Process Design Kit) that is exclusively designed for use in Calibre® PERC™ software.