Tiny Microchips Enable Extreme Science
July 13, 2016 | NASAEstimated reading time: 2 minutes

As NASA spacecraft explore deeper into space, onboard computer electronics must not only be smaller and faster, but also be prepared for extreme conditions. A prime example is shown in these images: a family of Application Specific Integrated Circuits, or ASICs, microchips specifically designed to measure the particles in space – the very stuff that can create radiation hazards for satellite computers.
These tiny, radiation-resistant chips play a crucial role in one of the instruments nestled inside the radiation-shielded electronics vault on NASA’s Juno spacecraft – which entered Jupiter’s orbit on July 4. The microchips aboard Juno are part of the Jupiter Energetic Particle Detector Instrument, or JEDI, a cutting-edge instrument that will measure the composition of the immense magnetic system surrounding the planet, called a magnetosphere.
The Application Specific Integrated Circuits, or ASICs, are integral to JEDI’s investigation of unique space environments like that surrounding Jupiter. They will measure the speed, energy and position of particles and photons in space with incredible accuracy.
Credits: NASA’s Goddard Space Flight Center/Joy Ng
The ASICs measure the speed, energy and position of particles and photons in space with time accuracy down to a fraction of a billionth of a second. The largest chip is barely the size of a saltine cracker. Without these chips, satellite electronics would be much heavier and require substantially more shielding and power – potential problems for any satellites traveling into space.
“Before my work, you had electronics that were very big – over two pounds,” said Nikolaos Paschalidis, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Paschalidis conceived of and first developed ASICs when he worked at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “A great deal of my early work was on miniaturization of space instruments and systems with advanced technologies like electronics onto a microchip.”
Paschalidis is the chief technologist for heliophysics at Goddard. Heliophysics is the study of the sun and how it affects the particles and energy in space. Far from being empty, the space surrounding planets is filled with fast moving particles and a complex electromagnetic system often driven by the sun. Near Jupiter, this system includes intense aurora and giant radiation belts surrounding the gas giant. It’s the job of JEDI, led by Barry Mauk at the Johns Hopkins Applied Physics Laboratory, to observe this complex system.
Better understanding of a planet’s space environment helps us understand how it was formed and continues to evolve. Moreover, it helps us learn more about how to prepare spacecraft to travel through such harsh radiation conditions.
Juno isn’t the first spacecraft to carry these microchips. ASICs have been incorporated in many other NASA missions to study a diverse range of space environments from close to the sun to the heart of Earth’s radiation belts to the edge of the solar system. However, the Juno mission required a significant advance in ASIC performance over prior spaceflight electronics: The Juno ASICs were specially developed to be radiation-hardened, enabling them to withstand the harsh, radiative environment of Jupiter’s magnetosphere where high-energy particles constantly bombard objects and deposit large doses of radiation.
Suggested Items
NEPCON ASIA 2025: Innovating Smart Manufacturing Ecosystems and Bridging Global Opportunities
07/11/2025 | PRNewswireTaking place from October 28 to 30, 2025 at the Shenzhen World Exhibition & Convention Center (Bao'an), NEPCON ASIA is the premier platform to discover the latest technologies and market trends, connect with new suppliers and products, and explore potential partnerships and distribution opportunities.
Mycronic Delivers Strong Q2 Performance and Raises 2025 Outlook to SEK 7.5 Billion
07/11/2025 | MycronicMycronic reported a 35% increase in Q2 net sales and a 27% EBIT margin, prompting an upward revision of its full-year 2025 revenue forecast to SEK 7.5 billion.
Kitron Reports Strengthening Momentum in Q2 2025
07/10/2025 | KitronKitron reported solid quarterly sales and profits, particularly driven by the Defence & Aerospace market sector.
Seeing a Future in Mexico
07/09/2025 | Michelle Te, I-Connect007The Global Electronics Association (formerly known as IPC) has been instrumental in fostering a partnership with Guanajuato, a state north of Mexico City with 12 industrial clusters and close to 150 companies involved in electronics. This past spring, Alejandro Hernández, the undersecretary for investment promotion in Guanajuato, attended IPC APEX EXPO 2025 at the invitation of IPC Mexico Director Lorena Villanueva, where he met with several companies to discuss the opportunities available in Mexico. He is inviting electronics-related companies seeking long-term investment in a centrally located area with access to highways, railways, and ports.
Webinar Review: A Global Trade and Economy in Flux
07/09/2025 | I-Connect007 Editorial TeamIn a July 8 webinar, Global Electronics Association Chief Economist Shawn DuBravac provided a comprehensive analysis of the evolving international trade environment, its implications for inflation, monetary policy, and labor dynamics, and a sober assessment of market valuations. In “Navigating a Shifting Landscape” DuBravac painted a picture of a global economy in flux, where shifting trade alliances and tariff structures are redrawing the supply chain map and influencing the broader economic landscape, while also conveying an overall bullish market outlook.