Adipose Analysis on Microfluidic Chips
July 14, 2016 | biossEstimated reading time: 2 minutes

A Freiburg-based research group has developed a microfluidic chip where more than one hundred apidose-derived adult stem cell cultures can grow and divide. In the human body, adipose tissue acts as a primary energy store. Adult stem cells have the task of maintaining and regenerating this process. The researchers used the new lab-on-a-chip to study how adult stem cells in adipose tissue develop into mature fat cells, conducting their investigations outside the body. Previous experiments have enabled them to decode a signalling pathway involved in adipose cell maturation and to show that calories in the nutrient medium influence this process. The team has published the results of its research in the journal Proceedings of the National Academy of Sciences (PNAS). “Going forward, we want to investigate the environmental factors – particularly the nutrient conditions – that cause different adipose cell types to grow,” explains biophysicist Dr. Matthias Meier. “This will enable us to develop new approaches to combating obesity and diabetes.”
In contrast to embryonic stem cells, when adult stem cells divide, their offspring are only able to develop at the same site and in certain tissue types. Factors such as insulin and blood sugar levels also influence whether or not adult stem cells in adipose tissue will develop into mature adipose cell. Aberrations in this maturation process can lead to diabetes or obesity. The multitude of factors operating here make it very complicated, however, for scientists to investigate this process outside the body.
In order to overcome this problem, the Freiburg-based research group has developed a microfluidic chip that works with minute volumes of liquid: The platform uses microchannels to feed cell cultures with nutrients during their three-week growth period. A special feature of the set-up is an automatic protein analysis program integrated into the chip, which decodes signalling pathways during cell growth. The new technology allows the researchers to vary the external cell factors such that the micro-environment on the chip resembles conditions within the body as closely as possible. This enabled adipose-derived adult stem cells to be successfully converted into mature fat cells within the experiments, and the corresponding signalling pathway mTORC1 was also decoded. “By increasing the calorie content in the nutrient medium, we were able to show that fat is stored more rapidly during maturation,” states Meier. “However, it remains unclear whether adjusting the calorie levels in this way leads to an increased rate of adipose cell formation.” To answer this question, the research team now wants to systematically use the chip technology to study the association between human eating habits and the formation of fat cells.
Eight researchers were involved in the study: Matthias Blazek, Matthias Meier, Indranil Mitra, Alina Platen, Nils Schneider, Xuanye Wu and Prof. Dr. Roland Zengerle conduct research at the Department of Microsystems Engineering (IMTEK) and belong to the BIOSS Centre for Biological Signalling Studies Cluster of Excellence at the University of Freiburg. Prof. Dr. Roland Schüle is the Scientific Director of the Centre for Clinical Research at Freiburg University Hospital.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.