Public Safety Increased With the Ability to Remotely Disable Vehicles
August 1, 2016 | CORDISEstimated reading time: 3 minutes

In its endeavour to keep the public safe, one of the key challenges facing European security services is the ability to control and stop, at distance, non-cooperative vehicles posing a threat. However, this ability presents more than a technical challenge. To comply with EU legislation, as well as adhere to ethical concerns, the technology would also have to be safe for the user, the driver (and passengers), as well as members of the public and the material infrastructure of the surrounding environment.
The SAVELEC (Safe control of non cooperative vehicles through electromagnetic means) project developed a prototype device, after testing signals (magnetic pulses and microwave), which interfered with key car components, forcing it to slow down and stop. With the contribution of security forces as the ultimate end users, the researchers were able to simulate the technology’s use in realistic scenarios.
Prototype device for a variety of security scenarios
SAVELEC first set up an end-user advisory panel comprising of law enforcement agencies and associated security organisations from different European countries, to better understand the likely operating environment for any technology developed. Scenarios were identified in terms of operational distance, target speed, distance to nearby persons and any immediate environmental considerations. As the project’s coordinator, Dr. Marta Martínez Vázquez points out, ‘This analysis included land and maritime missions, with the device implemented on a ground, seaborne or airborne platform.’
Developing the technology itself first required a review and cost analysis of what was currently available on the market, as well as establishing the car components best targeted for remote interference. In lab bench testing SAVELEC evaluated signal frequency, waveform and duration - principally of electromagnetic pulses (EMP) and high power microwaves (HPM) - to determine which could best disrupt the functioning of a vehicle’s electronic components.
Assessing the project’s success, Dr. Martínez Vázquez asserts that, ‘An EMP/HPM car-stopping device prototype at a breadboard level was designed, fabricated and tested. Its performance was successfully demonstrated in an open field controlled track, in of the presence of SAVELEC affiliated end-users’. The capacity of the prototype also surpassed expectations. ‘It demonstrated the functionality of the whole device, with a car moving on an open air track,’ she comments. ‘Conservative expectations had been to only demonstrate a sub-system of the device, or the whole system, but with a stationary car.’
The project also used the simulated environment to investigate the wider impact of the technology on humans and materials. For example, it looked at driver reactions to loss of vehicle control under six different scenarios including high speed, dense traffic and narrow roads, involving over 70 volunteers. A literature review of previous results allowed the assessment of the likelihood of petrol tank explosions from electromagnetic exposure or damage to airbags. Additionally, it assessed three different electromagnetic exposure scenarios for the pedestrian/bystander, car driver and device operator to ascertain safety limits.
Beyond proof-of-concept
A core outcome of the project, with the help of the European security forces and an Independent Ethics Advisory Board, was a regulatory framework proposal within which this technology could function. The framework included compatibility with European legislation which ensures the safety of all those exposed to electromagnetism.
For the prototype device to progress beyond the successful proof-of-concept stage, there are two principal challenges which would have to be overcome. ‘Further investigation should concentrate on the miniaturisation of the different components, and in extending its operational range (by increasing the power that can be generated),’ Dr. Martínez Vázquez says. She also recommends that different car models should be tested, as SAVELEC concentrated on only one. There should also be further investigation on human health and safety implications.
Whilst SAVELEC specifically tested the technology on cars, it could easily be adapted to other vehicles such as fast vessels, trucks or motorbikes. The project’s results have also contributed to improvements in other fields, such as the study of human exposure to electromagnetic fields and the development of better driving simulators.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Blaize, Technology Control Company Partner to Power Saudi Arabia’s Next-Generation AI Innovation Infrastructure
09/17/2025 | BUSINESS WIREBlaize Holdings, Inc., a leader in programmable, energy-efficient edge AI computing, and Technology Control Company (TCC), a leading technology solutions provider in the Kingdom of Saudi Arabia (KSA), announced a strategic partnership to advance Saudi Arabia’s AI innovation infrastructure and accelerate its digital transformation goals.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
On the Line With… Podcast: UHDI and RF Performance
09/17/2025 | I-Connect007I-Connect007 is excited to announce the release of a new episode in its latest On the Line with... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.