Hybrid Solar Cells Have Applications in Flexible Electronics and Portable Devices
August 15, 2016 | KAUSTEstimated reading time: 2 minutes

Understanding the impact of surface defects underpins the improved efficiency of hybrid organic/inorganic solar cells.
Hybrid solar cells utilize an interface comprising layers of organic and inorganic materials to convert sunlight into electricity. Zinc oxide (ZnO) is a popular choice for the inorganic material because it is cheap, non-toxic and readily available. However, the conversion efficiency of hybrid solar cells using ZnO/organic-donor bulk heterojunctions is currently very low—only 2 percent when ZnO is blended into an organic donor material. On the other hand, a decent 6.1 percent efficiency has been reached when ZnO is used as a layer sandwiched between an electrode and a layer of polymer or small-molecule acceptors.
Jean-Luc Bredas from the KAUST Solar & Photovoltaics Engineering Research Center and colleague Hong Li suspect that intrinsic defects in ZnO are a key factor in the poor performance1. By comparing the differences in electronic properties between various hybrid materials, they concluded that zinc vacancies reduce conversion efficiency by hindering the charge separation process at the interface between the organic and inorganic materials.
It is well known that ZnO adopts different roles in bulk heterojunctions depending on the type of organic material and architecture used. When blended with polymer or small-molecular donors such as sexithienyl, ZnO assumes the role of an electron acceptor: it takes up or "accepts" electrons and leaves positively charged holes behind in a sexithienyl layer.
When sandwiched between an electrode and a fullerene acceptor layer, ZnO helps transfer the electrons from the fullerene layer to the electrode. These processes enable the efficient conversion of sunlight into electricity.
The researchers used computer simulations to examine how zinc vacancies at the surface of zinc oxide impact these two processes. For the ZnO/sexithienyl bulk heterojunction, zinc vacancies at the ZnO surface can hinder local charge transfer at the ZnO/sexithienyl interface and can also prevent efficient charge separation due to strong Coulomb interactions. However, for the ZnO/fullerene interface, such vacancies don’t significantly impact the charge transfer process.
For these reasons, the ZnO/organic heterojunctions developed so far are inefficient. In comparison, however, zinc vacancies have significantly higher negative impact on ZnO/sexithienyl than on ZnO/fullerene interfaces. The results have important implications for the development of hybrid solar cells, which have applications in flexible electronics and portable devices.
“What we learned from our investigations is to what extent defects at the surface of conducting metal oxides like ZnO determine the overall electronic properties and ultimately the device efficiencies,” noted Bredas. He suggested the findings indicate possible ways to improve solar cell efficiency through surface modifications.
Suggested Items
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.