-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Computer-Aided-Manufacturing, Part 1—Automation Protocols
September 14, 2016 | Happy HoldenEstimated reading time: 19 minutes
Figure 8: Equipment operation and GEM capability for industrial automation. (Source: HP Journal, July 1985).
Meaning
Characteristic for industrial production in an Industry 4.0 environment are the strong customization of products under the conditions of highly flexibilized (mass-) production. The required automation technology is improved by the introduction of methods of self-optimization, self-configuration, Self-diagnosis, cognition and intelligent support of workers in their increasingly complex work
Effects
Current activities addressed the prevalence of the Internet of Things in manufacturing and the consequent technology-driven changes which promise to trigger a new industrial revolution. At Bosch, and generally in Germany, this phenomenon is referred to as Industry 4.0. The basic principle of Industry 4.0 is that by connecting machines, work pieces and systems, businesses are creating intelligent networks along the entire value chain that can control each other autonomously. Some examples for Industry 4.0 are machines which can predict failures and trigger maintenance processes autonomously or self-organized logistics which react to unexpected changes in production.
There are differences between a typical traditional factory and an Industry 4.0 factory. In the current industry environment, providing high-end quality service or product with the least cost is the key to success and industrial factories are trying to achieve as much performance as possible to increase their profit as well as their reputation. In this way, various data sources are available to provide worthwhile information about different aspects of the factory. In this stage, the utilization of data for understanding current operating conditions and detecting faults and failures is an important topic to research. e.g. in production, there are various commercial tools available to provide this protocol.
Wikipedia further explains what Industry 4.0 includes[11]:
Overall Equipment Effectiveness (OEE) information to factory management in order to highlight the root causes of problems and possible faults in the system. In contrast, in an Industry 4.0 factory, in addition to condition monitoring and fault diagnosis, components and systems are able to gain self-awareness and self-predictiveness, which will provide management with more insight on the status of the factory. Furthermore, peer-to-peer comparison and fusion of health information from various components provides a precise health prediction in component and system levels and force factory management to trigger required maintenance at the best possible time to reach just-in time maintenance and gain near zero downtime.
Challenges which have been identifiedinclude:
- IT security issues, which are greatly aggravated by the inherent need to open up those previously closed production shops
- Reliability and stability needed for critical machine-to-machine communication (M2M), including very short and stable latency times
- Need to maintain the integrity of production processes
- Need to avoid any IT snags, those would cause expensive production outages
- Need to protect industrial knowhow (contained also in the control files for the industrial automation gear)
- Lack of adequate skill-sets to expedite the march towards fourth industrial revolution
- Threat of redundancy of the corporate IT department
- General reluctance to change by stakeholders
Next time, in Computer Aided Manufacturing Part 2, I will offer automation examples from personal projects I have been involved with.
References
- Industry 4.0 Smart Manufacturing for the Future
- Introduction to Serial Communications, TalTech Instrumental Software Solutions.
- IEEE Standard Codes
- IEEE-488, Wikipedia.
- Message Automation & Protocol Simulation (MAPS™), GL Communications, Inc.
- “Semiconductor Productivity at HP,” HP Journal, July 1985.
- SEMI Standard E30, General Equipment Model.
- IPC Status of Standardization; IPC Committee Home Pages
- Smart IoT Technology for Machine Condition Monitoring
- Hermann, M., Pentek, T., Design Principles for Industrie 4.0 Scenarios, Working Paper No. 01/2015, technische universitat-Dortmund, 2015.
- Industry_4.0, Wikipedia.
Happy Holden has worked in printed circuit technology since 1970 with Hewlett-Packard, NanYa/Westwood, Merix, Foxconn and Gentex. He is the co-editor, with Clyde Coombs, of the recently published Printed Circuit Handbook, 7th Ed. To contact Holden, click here.
Page 5 of 5
Suggested Items
Tata Electronics Appoints KC Ang as President and Head of Tata Semiconductor Manufacturing
04/03/2025 | PRNewswireTata Electronics Private Limited, a pioneer in the Indian electronics and semiconductor manufacturing sector, announced the appointment of KC Ang as President and Head of its Foundry business - Tata Semiconductor Manufacturing Private Limited reporting to Dr. Randhir Thakur, CEO & MD of Tata Electronics.
CEE PCB Appoints Fred Hickman as Vice President of Sales, North America
04/03/2025 | CEE PCBTom Yang, CEO of CEE PCB, is pleased to announce the appointment of Fred E. Hickman III as Vice President of Sales for North America.
Statement from IPC on ‘Liberation Day’ Pressing for Domestic Manufacturing Strategy
04/03/2025 | IPCIPC, a global electronics association dedicated to furthering the competitive excellence and financial success of more than 3,200 members, shared the following statement today on U.S. tariffs and their implications on the global electronics industry. It can be attributed to Richard Cappetto, IPC senior director of North American government affairs:
My Top 10 Highlights from IPC APEX EXPO 2025
04/03/2025 | Chris Mitchell, IPC VP, Global Government RelationsEvery year, I am reminded what an exciting and fast-paced whirlwind IPC APEX EXPO is—the friends you run into, the new people you meet, the innovations you encounter, and the fascinating discussions you dive into. It’s certainly true that our industry is driven by searchers and problem-solvers, creating endless opportunities at APEX EXPO to connect, collaborate, and shape the future.
'Let’s Talk Production Test' with Bert Horner of The Test Connection, Inc. at SMTA Long Island Meeting
04/02/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is pleased to announce that its President, Bert Horner, will present at the SMTA Long Island Chapter Technical Meeting & Dinner on Wednesday, April 16, 2025. The event will take place at the Radisson Hotel Hauppauge in Hauppauge, NY.