-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSoldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
The Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Reflections on 40 Years of Test and Measurement and What Lies Ahead
January 24, 2017 | James Truchard, PhD, National InstrumentsEstimated reading time: 8 minutes
As I approach the end of my 40-year career as CEO of National Instruments, I am reminded of the great progress and innovations the test and measurement industry has witnessed since 1976. We have gone from an industry driven by vacuum tube technology in the era of General Radio to a time when the transistor ruled with Hewlett Packard to today, when software truly is the instrument—a transition that NI helped shepherd.
Moore’s law has taken us for a wild, fast ride to say the least, and just when you think it’s run its course, process innovations extend into new dimensions (literally) and push performance even further.
Just like the transistor, NI started from humble beginnings, but it has relentlessly focused on engineering great products and empowering world- changing innovation through our customers and platform technology. Allow me to reminisce on what the past 40 years have taught me and where I see this market heading as I shift into the next phase of my career.
Do for Test and Measurement What the Spreadsheet Did for Financial Analysis
When Jeff Kodosky, Bill Nowlin, and I started NI in 1976, we saw tremendous room for innovation in how engineers and scientists interacted with and built test and measurement equipment. We founded the company on the premise that there had to be a better way to serve the test and measurement needs that we, engineers and scientists, faced. We couldn’t buy it off the shelf but at least we wouldn’t have to build it from scratch.
The general purpose interface bus (GPIB, IEEE 488) was our gateway. Our vision, as stated in 1983, was to “do for test and measurement what the spreadsheet did for financial analysis.” Stated today, the sentence loses some of its power, but think about the early ’80s. At the time, the tools for financial analysis were “locked up” and too expensive for anyone without a big budget to access them. The early incarnations of spreadsheets turned this situation on its head, and that is exactly what we wanted to do. We wanted to make it so that any engineer or scientist could access the same tools or platform used by the R&D teams of the leading technology companies. It was a radically empowering view at the time and, in many ways, it still is.
The Software is the Instrument
While others might have seen GPIB as a hardware play, we recognized it for what it enabled in terms of software. As the PC industry evolved (as well as Apple’s Mac, which we had a special affinity for given its graphical user interface), that GPIB cable made it easy to analyze and present data in a customized way for our customers’ needs. They were no longer confined to the front panel of an instrument and their pencils and notepads for data acquisition. The opportunity to innovate then shifted to the software world, where programming languages needed instrument drivers for the connected boxes. Our strategy of writing and supporting those drivers offered a critical service that continues today as NI supports more than 10,000 drivers on the company’s Instrument Driver Network.
But that world still left engineers and scientists with the burden of using tools designed for computer science to perform engineering, test, and measurement tasks. Our answer was twofold: LabWindows/CVI, to offer engineering-specific tools in ANSI C programming, and LabVIEW, a graphical programming paradigm that took the way we think about solving a problem (in flowcharts and pictures) and turned it into compiled code. The story was simple: acquire, analyze, and present. Do it in software tools designed for a customer’s use case that were easy to learn yet extremely powerful. We coined the phrase ”The software is the instrument” to describe this approach, and seeing engineers and scientists save valuable time and get to results faster was all the market validation we ever needed.
Evolving With Moore's Law
People talk about Moore's law like it’s about hardware, but computational hardware exists only to run software (and maybe firmware). Once we made test and measurement all about software, we had effectively enlisted Intel, Xilinx, and many other billion dollar companies in our R&D staff. With customers and partners building proficiency with our software tools, we just had to follow the chips to deliver increasing value to test and embedded systems. This has happened, so far, along two key dimensions: multicore processors and FPGAs.
Because LabVIEW is graphical and, therefore, not obviously sequential, it is tailor-made for parallel processing. LabVIEW users were among the first programmers to easily migrate from single-core processors to multiple threads and multiple cores and see almost instant speed improvements. Obviously, it’s possible to take advantage of these trends with other languages, just like it’s still possible to write highly efficient code in machine or assembly language, but why would you? The pace of change in modern electronics means you can’t waste time doing by hand what a tool can easily do for you, and we hear that over and over from LabVIEW users.
That goes to an entirely different level with FPGAs. Some problems are just better solved in the highly parallel, deterministic world of silicon. But the toolchains and programming constructs were inaccessible to most mechanical engineers or medical researchers who were experts in their measurements and problems to solve (not digital design). We recognized this in the late 1990s with LabVIEW’s graphical paradigm. We were on a quest to deliver the power of FPGAs to LabVIEW programmers, and we’ve done that. A quick look at our Engineering Impact Awards winners demonstrates the power of this technology: applications ranging from regenerating and restoring organ function damaged by disease or trauma to setting a world record in 5G wireless spectrum efficiency with massive MIMO.
A Software-Centric Approach to Hardware Design
When you think about software as uniquely as we have, it’s easy to think differently about hardware, too. Modular, PC-based plug-in boards were a natural by-product. Make the hardware as lightweight and cost-effective as possible (no dedicated screens, power supplies, fixed buttons/knobs, and so on) and focus on ADCs, DACs, signal conditioning, and data movement.
I have yet to see a test and measurement vendor design a user interface better than a customer, for any specific task, that makes the customer more productive. Even the best front panels on box instruments are cluttered with unused buttons or menu structures. Many of our hardware products have size constraints dictated by the I/O connector. Can it get more efficient than that?
The reality is our strategy is more than just efficient; it’s right. Take the new Vector Signal Transceiver (VST), which combines an RF analyzer, RF generator, parallel and serial digital interfaces, and high-performance signal processing into a two-slot PXI module. This product delivers industry-leading bandwidth (1 GHz), amazing RF performance, and scalability for MIMO applications for one reason: software. We moved as many technical problems into the FPGA as we could, and Moore’s law (along with Xilinx) delivered a vehicle capable of handling the computation. We, in turn, passed the keys to that vehicle over to our customers by allowing them to customize that FPGA with LabVIEW. From 5G cellular technology development to automotive radar and driver assist algorithm development to reductions in the cost of Internet of Things (IoT) devices, the VST and LabVIEW are helping customers achieve goals conventional instruments quite simply prevent them from obtaining.
Page 1 of 2
Suggested Items
EpoxySet to Exhibit at MD&M West
12/05/2024 | epoxySetEpoxySet Inc. will be exhibiting at MD&M West on February 4-6, 2025 in the Anaheim Convention Center, booth 617.
The Training Connection Difference
12/04/2024 | Andy Shaughnessy, I-Connect007Bert Horner, president of The Test Connection, has recently launched The Training Connection, a new company that addresses critical training needs in test engineering and development. With a focus on essential methodologies like design for test (DFT) and IPC standards, the initiative promises to enhance the skills of professionals in the field. At PCB Carolina, Bert talked about the program, its positive reception, and the growing demand for practical, effective training solutions within the industry.
Skunk Works Demonstrates Airborne Battle Management of AI-Controlled Aircraft
11/27/2024 | Lockheed MartinLockheed Martin Skunk Works, in partnership with Lockheed Martin's Demonstrations and Prototypes organization and the University of Iowa's Operator Performance Laboratory (OPL), showcased a crewed-uncrewed teaming mission where an airborne battle manager issued real-time commands to AI-controlled aircraft through a touchscreen pilot vehicle interface (PVI).
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
Real Time with... electronica 2024: SPEA's AI Integration—Innovations in Test Equipment
11/25/2024 | Real Time with... electronicaIn this interview from electronica 2024, Pete Starkey speaks with Andrea Furnari, VP of Electronic Test Products Business Unit for SPEA. The discussion revolves around AI integration in test equipment, trends in substrate materials, and SPEA's focus on R&D.