Highly Flexible Organic Flash Memory for Foldable and Disposable Electronics
November 6, 2017 | KAISTEstimated reading time: 2 minutes
A KAIST team reported ultra-flexible organic flash memory that is bendable down to a radius of 300μm. The memory exhibits a significantly-long projected retention rate with a programming voltage on par with the present industrial standards.
A joint research team led by Professor Seunghyup Yoo of the School of Electrical Engineering and Professor Sung Gap Im of the Department of Chemical and Biomolecular Engineering said that their memory technology can be applied to non-conventional substrates, such as plastics and papers, to demonstrate its feasibility over a wide range of applications.
With Dr. Seungwon Lee and Dr. Hanul Moon playing the role of leading authors, the research was published in Nature Communications on September 28.
Flash memory is a non-volatile, transistor-based data-storage device that has become essential in most electronic systems in daily life. With straightforward operation mechanisms and easy integration into NAND or NOR array architecture, flash memory has been established as the most successful and dominant non-volatile memory technology by far.
Despite promising demonstrations in the early stages of organic electronics, the overall progress in this field has been far slower than that of thin-film transistors (TFTs) or other devices based on flexible materials. It has been challenging, in particular, to develop flash memory that simultaneously exhibits a significant level of flexibility and performance. This is mainly due to the scarcity of flexible dielectric layers, which are responsible for the tunneling and blocking of charges.
The solution processing used for the preparation of most of the polymeric dielectric layers also makes it difficult to use them in flash memory due to the complexity involved in the formation of the bilayer dielectric structure, which is the key to flash memory operations.
The research team tried to overcome these hurdles and realize highly flexible flash memory by employing thin polymeric insulators grown with initiated chemical vapor deposition (iCVD), a vapor-phase growth technique for polymers that was previously shown to be promising for the fabrication of flexible TFTs. It was further shown that these iCVD-based polymeric insulators, when coupled with rational device design and material choice, can make a significant contribution to flash memory as well.
Memory using conventional polymer insulating films has often required a voltage as high as 100 V (volt) in order to attain long memory retention. If the device is made to operate at a low voltage, the short retention period of less than a month was problematic.
The KAIST team produced flash memory with programming voltages around 10 V and a projected data retention time of over 10 years, while maintaining its memory performance even at a mechanical strain of 2.8%. This is a significant improvement over the existing inorganic insulation layer-based flash memory that allowed only a 1% strain.
The team demonstrated the virtually foldable memory devices by fabricating the proposed flash memory on a 6-micrometer-thick ultrathin plastic film. In addition, it succeeded in producing them on printing paper, opening a way for disposable smart electronic products such as electronic paper and electronic business card.
Professor Yoo said, " This study well illustrates that even highly flexible flash memory can be made to have a practically viable level of performance, so that it contributes to full-fledged wearable electronic devices and smart electronic paper."
Suggested Items
nano3Dprint Unveils Cutting-Edge Conductive Silver Ink Products in Collaboration with Creative Materials
08/27/2024 | PRWEBnano3Dprint, a leading additive manufacturing and printed electronics solutions provider, is thrilled to announce the launch of its groundbreaking Conductive Silver Ink Products for use in nano3Dprint's A2200, B3300 and MatDep Pro 3D printers.
Smartkem to Present at The International Conference on Flexible and Printed Electronics (ICFPE) 2024
08/21/2024 | BUSINESS WIREThe presentation, given by Smartkem Head of Technology Transfer, Steven Tsai, will take place during a session titled "Flexible and Printed Electronics: New Technologies and Applications", moderated by Dr. Klaus Hecker, Managing Director at OE-A. Smartkem representatives will be in attendance throughout the conference, from Tuesday, August 28 to Friday, August 30, and will be available for 1-on-1 meetings.
Global Flexible PCB Market Rebounds in 2024, Driven by New Device Demand and Electric Vehicles
08/16/2024 | TPCATaiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) recently released the "2024 Global Flexible PCB Industry Overview and Development Trends" report. It forecasts that the global flexible PCB market will gradually recover from the downturn in 2023, with the market size (including rigid-flex PCBs, the same below) expected to reach USD 19.7 billion in 2024, representing a 7.3% year-on-year growth.
All Flex Solutions Adds Talent to Flexible Circuit Assembly
08/14/2024 | All Flex SolutionsThe Flexible Circuit Assembly Center of Excellence at All Flex Solutions is pleased to announce a key hire and a promotion in their operation in Bloomington, Minnesota.
DuPont Acquires Nanowire Technology and Business Assets from C3Nano
08/14/2024 | DuPontThis acquisition expands DuPont's electronics materials offerings and adds capabilities to provide cutting-edge technological solutions for transparent and flexible films and inks.