New Research Shows How Paper-Cutting Can Make Ultra Strong, Stretchable Electronics
April 4, 2018 | University at BuffaloEstimated reading time: 1 minute

Like a yoga novice, electronic components don’t stretch easily. But that’s changing thanks to a variation of origami that involves cutting folded pieces of paper.
In a study published April 2 in the journal Advanced Materials, a University at Buffalo-led research team describes how kirigami has inspired its efforts to build malleable electronic circuits.
Their innovation — creating tiny sheets of strong yet bendable electronic materials made of select polymers and nanowires — could lead to improvements in smart clothing, electronic skin and other applications that require pliable circuitry.
“Traditional electronics, like the printed circuit boards in tablets and other electronic devices, are rigid. That’s not a good match for the human body, which is full of bends and curves, especially when we are moving, says lead author Shenqiang Ren, professor in the Department of Mechanical and Aerospace Engineering.
“We examined the design principles behind kirigami, which is an efficient and beautiful art form, and applied them to our work to develop a much stronger and stretchable conductor of power,” says Ren, also a member of UB’s RENEW Institute, which is dedicated to solving complex environmental problems.
The study, which includes computational modeling contributions from Temple University researchers, employs nanoconfinement engineering and strain engineering (a strategy in semiconductor manufacturing used to boost device performance).
Without kirigami, the polymer—known as PthTFB—can be deformed up to 6% from its original shape without changing its electronic conductivity. With kirigami, the polymer can stretch up to 2,000%. Also, the conductivity of PthTFB with kirigami increases by three orders of magnitude.
The advancement has many potential applications, including electronic skin (thin electronic material that mimics human skin, often used in robotic and health applications), bendable display screens and electronic paper. But its most useful application could be in smart clothing, a market that analysts says could reach $4 billion by 2024.
The research was supported the U.S. Department of Energy.
Suggested Items
TT Electronics Secures Multi-Million-Pound Defense Contract with Ultra PCS
07/18/2025 | TT ElectronicsTT Electronics, a leading provider of global manufacturing solutions and engineered technologies, announced that it has been awarded a significant new contract with long-standing customer Ultra PCS Ltd (Ultra Precision Control Systems).
NEOTech’s Agave 1 Facility Earns AS9100 Certification for Commercial Aerospace Manufacturing Excellence
07/17/2025 | NEOTechNEOTech, a premier provider of electronic manufacturing services (EMS), integrated design engineering, and advanced supply chain solutions for the aerospace and defense, medical device, and high-tech industrial markets, proudly announces that its Agave 1 manufacturing facility in Juarez, Mexico has officially received AS9100 certification.
Federal Electronics Invests in HydroJet Inline Cleaning Technology at Hermosillo Facility
07/15/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, has strengthened the advanced cleaning capabilities of its Hermosillo, Mexico facility with the recent installation of a HydroJet Inline Cleaner from Austin American Technology (AAT).
FTG Announces Q2 2025 Financial Results
07/09/2025 | Globe NewswireFiran Technology Group Corporation announced financial results for the second quarter 2025. Revenue: Recorded at $48.7 million, a 25.6% increase over Q2 2024.
Moog Announces Acquisition of COTSWORKS
07/07/2025 | BUSINESS WIREMoog Inc., a worldwide designer, manufacturer and systems integrator of high-performance precision motion and fluid controls and control systems, announced the acquisition of COTSWORKS Inc., an aerospace and defense fiber optics transceiver component manufacturer, for a purchase price of $63 million.