Spinning the Light: The World's Smallest Optical Gyroscope
October 26, 2018 | CaltechEstimated reading time: 2 minutes
Gyroscopes are devices that help vehicles, drones, and wearable and handheld electronic devices know their orientation in three-dimensional space. They are commonplace in just about every bit of technology we rely on every day. Originally, gyroscopes were sets of nested wheels, each spinning on a different axis. But open up a cell phone today, and you will find a microelectromechanical sensor (MEMS), the modern-day equivalent, which measures changes in the forces acting on two identical masses that are oscillating and moving in opposite directions. These MEMS gyroscopes are limited in their sensitivity, so optical gyroscopes have been developed to perform the same function but with no moving parts and a greater degree of accuracy using a phenomenon called the Sagnac effect.
What is the Sagnac Effect?
The Sagnac effect, named after French physicist Georges Sagnac, is an optical phenomenon rooted in Einstein's theory of general relativity. To create it, a beam of light is split into two, and the twin beams travel in opposite directions along a circular pathway, then meet at the same light detector. Light travels at a constant speed, so rotating the device—and with it the pathway that the light travels—causes one of the two beams to arrive at the detector before the other. With a loop on each axis of orientation, this phase shift, known as the Sagnac effect, can be used to calculate orientation.
The Problem
The smallest high-performance optical gyroscopes available today are bigger than a golf ball and are not suitable for many portable applications. As optical gyroscopes are built smaller and smaller, so too is the signal that captures the Sagnac effect, which makes it more and more difficult for the gyroscope to detect movement. Up to now, this has prevented the miniaturization of optical gyroscopes.
The Invention
Caltech engineers led by Ali Hajimiri, Bren Professor of Electrical Engineering and Medical Engineering in the Division of Engineering and Applied Science, developed a new optical gyroscope that is 500 times smaller than the current state-of-the-art device, yet they can detect phase shifts that are 30 times smaller than those systems. The new device is described in a paper published in the November issue of Nature Photonics.
How it Works
The new gyroscope from Hajimiri's lab achieves this improved performance by using a new technique called "reciprocal sensitivity enhancement." In this case, "reciprocal" means that it affects both beams of the light inside the gyroscope in the same way. Since the Sagnac effect relies on detecting a difference between the two beams as they travel in opposite directions, it is considered nonreciprocal. Inside the gyroscope, light travels through miniaturized optical waveguides (small conduits that carry light, that perform the same function as wires do for electricity). Imperfections in the optical path that might affect the beams (for example, thermal fluctuations or light scattering) and any outside interference will affect both beams similarly.
Hajimiri's team found a way to weed out this reciprocal noise while leaving signals from the Sagnac effect intact.Reciprocal sensitivity enhancement thus improves the signal-to-noise ratio in the system and enables the integration of the optical gyro onto a chip smaller than a grain of rice.
Suggested Items
Gathering Around the EMS Table
03/11/2025 | Mark Wolfe, IPCWhen I entered the EMS provider industry 30 years ago, I attended some early IPC EMS management meetings. While I enjoyed the planned presentations, I especially valued the roundtable discussions with other industry peers. They not only provided an excellent opportunity to foster new relationships but also allowed me to listen to others facing similar challenges, who often addressed them in innovative ways that I could benefit from.
Siemens Boosting U.S. Investments by Over $10 Billion for American Manufacturing Jobs, Software and AI Infrastructure
03/07/2025 | SiemensSiemens is ramping up investments in the U.S. to support and benefit from America’s industrial tech growth. “The industrial tech sector is the basis to boost manufacturing in America and there’s no company more prepared than Siemens to make this future a reality for customers from small and medium sized enterprises to industrial giants,” said Roland Busch, President and CEO of Siemens AG.
It’s Only Common Sense: Be the Solution, Not the Problem
03/10/2025 | Dan Beaulieu -- Column: It's Only Common SenseIn life and business, you’re either contributing to the problem or the solution. Customers come to you because they have a challenge, a pain point, or a problem that needs solving. The businesses that customers rave about consistently prove themselves to be problem solvers. Adopting a problem-solving mindset isn’t just good for your customers; it’s the key to building loyalty, standing out in the marketplace, and growing your business.
KYZEN Welcomes HIN to Europe Distributor Network
03/06/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, is pleased to announce an exciting new partnership with HIN A/S, a complete solutions supplier for modern electronics production.
North American PCB Industry Sales Up 19.9% in January
02/20/2025 | IPCIPC announced today the January 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.24.