-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
John Hendricks on 5G Materials
December 11, 2018 | Pete Starkey, I-Connect007Estimated reading time: 6 minutes
At the 2018 electronica exhibition in Munich, John Hendricks, product marketing manager for Rogers Corporation, discussed 5G materials including demands and trends.
Pete Starkey: John, it's great to see you again. Thank you for sparing the time to join us. It's been a very active show, and everybody I've spoken to has been very complimentary about it. One of the main talking points this week has been 5G. From your point of view, as a specialist supplier of materials, where are we going with 5G, and what are the implications of 5G for your company?
John Hendricks: Rogers is a company that makes printed circuit board materials, but most specifically, high-frequency PCB materials. We tend to approach things from the high-frequency point of view. If you look back at previous generations of telecommunications systems—2G, 3G, 4G—there were many technological developments along that path and evolution. In terms of high-frequency PCB materials, not much has changed. A power amplifier was a power amplifier, and an antenna was an antenna. The materials used in 2G also tended to get used in 3G and 4G. Also, the frequencies were very similar.
However, 5G is different from that point of view. There are a couple of reasons for that. One is there is a split in frequency. There's a low-frequency bit often called sub-6 GHz, and there's a high-frequency part generally called millimeter wave technology. The millimeter wave starts at 28 or 39 GHz, and the requirements for a PCB material at those frequencies are different from what they are at 1 or 2 GHz. That's one completely different change.
Secondly, even in the lower frequency area—sub-6 GHz, which is typically 2.6, 3.5, or 4.8 GHz—there's a trend toward much more integration. A power amplifier in the past was a single component. Now, power amplifiers, transceivers, and high-speed digital boards are all being integrated into high-count multilayer boards, typically 10–20 layers. That presents significantly different challenges for the materials than a two-layer power amp or a four-layer board that was used in previous generations, for example.
Starkey: How does your current range of products meet the demands of 5G?
Hendricks: Some of the materials that were used in the past can still be used. We used to break it down, and I suppose we still do break it down into power amplifiers and antennas. The power amplifiers in the past used RO4350B from Rogers, and that still has a strong place in 5G. The antennas used to use a lot of woven-glass PTFE materials typically acquired through Arlon. As we go into 5G, the antennas start to become a little more integrated. You might have a four-layer multilayer board or six-layer antennas with built-in feeds and distribution networks and elements.
That tends to move towards the more thermoset materials like RO4730G3, so that's covered. We've been supplying into millimeter-wave PCBs for many years, typically 24 and 77 GHz for automotive radar sensors; we have materials like RO3003 for that. Our traditional materials have a number of bases covered, but what we didn't really have was materials that were suitable for low-loss RF high-count multilayer boards, which is that integration that I referred to earlier—the power amplifier, transceiver, and high-speed digital coming together.
It's still ongoing, but what we did about six months ago is launch a family called RO4000T, which is a big extension of the RO4000 family. Essentially, those materials are thinner with many more options. Instead of having nothing below five mils or whatever it might've been, we now have 2.5-, 3-, 4-, and 5- mil thicknesses; it's a complete family of laminates, prepregs, and low-profile copper foils. The differences are that the new materials are thinner, but they also have spread or flat glass for reduced skew or variation in the dielectric constant.
Starkey: What types of resins are involved?
Hendricks: It's still the same thermoset resins. The RO4000 resin system is basically the same, but we're using smaller particle fillers, flatter glass, smoother copper, and more options. When you look at those, they're called RO4835 laminate, RO4450T prepreg, and CU4000 copper. The biggest difference is that in the past, people used to do a lot of core lamination with our products, and other people did foil lamination elsewhere. With these, you can do three- to four-stage HDI with three- to four-stage sequential foil laminations, using these copper foils as well as the prepregs, which is quite new for Rogers materials.
It's also a challenge because the higher frequencies need smoother coppers, which tends to mean poorer peel strength or less reliable PCBs. What we found over the last six months is that people who test these new products are reporting that even with three- or four-stage sequential foil laminations and with smooth foils, you're still getting good copper bonds and highly reliable bonds and plated-through holes through multiple thermal cycles, for example. I think people always expect the Rogers materials to have the best performance, but it's also proving to be extremely reliable through complex manufacturing processes. And that's probably the most important thing, which is so encouraging.
Starkey: Is there anything else related to materials for 5G applications that would be interesting to talk about?
Hendricks: If you look at 5G, one of the things people say—some of it may be a bit of hype, and some of it may be real—is that there are multiple “use cases” in addition to just phone calls and downloading videos. They tend to talk about three spaces: enhanced mobile broadband, which is essentially mobile or fixed communication; massive machine-to-machine communications, which is basically the next generation of IoT and is coming along a little bit later; and ultra-low latency, high-reliability applications like using 5G in autonomous driving, which is obviously something for the future but not today.
If you look at the immediate application, that's mostly the enhanced mobile broadband. In the millimeter-wave area, that typically means fixed wireless access at 28 or 39 GHz at the beginning; in the U.S., it may be an alternative to cable technology. What's coming in the next one to four years is the use of millimeter-wave bands for mobile communication. People are developing 28-GHz handsets, and that's something that we've never had in the industry before.
That’s a challenge for the materials because in those handsets, materials need to be not only low loss with smooth copper, they also have to be compatible with these multilayer manufacturing processes, for example. They sometimes need to be flexible and halogen-free because halogen-free is necessary in handsets but not in base-station infrastructure. That's a big challenge, which is something where we have some liquid-crystal polymer (LCP) materials that partly get you there, but it's an area that we're looking at closely—the handset people are actually telling us that they need our materials, not just the base-station people. That's one of the more interesting thing going forward for us.
Starkey: If you have the right knowledge and forward vision, you can anticipate what the requirement is going to be and be prepared when people ask for it.
Hendricks: Yes.
Starkey: John, I've learned a lot in the last few minutes. Thank you very much for being so open and sharing your information. I really appreciate it, and it's great to meet you again.
Hendricks: Cheers, thanks.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.