ANU Research Set to Shake-up Space Missions
March 15, 2019 | Australian National UniversityEstimated reading time: 2 minutes

A new study from The Australian National University (ANU) has found a number of 2D materials that not only withstand being sent into space but can potentially thrive in the harsh conditions.
It could influence the type of materials used to build everything from satellite electronics to solar cells and batteries - making future space missions more accessible, and cheaper to launch.
Ph.D. candidate and lead author Tobias Vogl was particularly interested in whether the 2D materials could withstand intense radiation.
"The space environment is obviously very different to what we have here on Earth. So we exposed a variety of 2D materials to radiation levels comparable to what we expect in space," Mr. Vogl said.
"We found most of these devices coped really well. We were looking at electrical and optical properties and basically didn't see much difference at all."
During a satellite's orbit around the earth, it is subject to heating, cooling, and radiation. While there's been plenty of work done demonstrating the robustness of 2D materials when it comes to temperature fluctuations, the impact of radiation has largely been unknown - until now.
The ANU team carried out a number of simulations to model space environments for potential orbits. This was used to expose 2D materials to the expected radiation levels. They found one material actually improved when subjected to intense gamma radiation.
"A material getting stronger after irradiation with gamma rays - it reminds me of the hulk," Mr. Vogl said.
"We're talking about radiation levels above what we would see in space - but we actually saw the material become better, or brighter."
Mr. Vogl says this specific material could potentially be used to detect radiation levels in other harsh environments, like near nuclear reactor sites.
"The applications of these 2D materials will be quite versatile, from satellite structures reinforced with graphene - which is five-times stiffer than steel - to lighter and more efficient solar cells, which will help when it comes to actually getting the experiment into space."
Among the tested devices were atomically thin transistors. Transistors are a crucial component for every electronic circuit. The study also tested quantum light sources, which could be used to form what Mr. Vogl describes as the "backbone" of the future quantum internet.
"They could be used for satellite-based long-distance quantum cryptography networks. This quantum internet would be hacking proof, which is more important than ever in this age of rising cyberattacks and data breaches."
"Australia is already a world leader in the field of quantum technology," senior author Professor Ping Koy Lam said.
"In light of the recent establishment of the Australian Space Agency, and ANU's own Institute for Space, this work shows that we can also compete internationally in using quantum technology to enhance space instrumentations."
Suggested Items
Electroninks Acquires Complete UTDots Advanced Materials Nanoinks Portfolio and IP
05/19/2025 | ElectroninksElectroninks, the leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, announced it has officially completed its full acquisition of UTDots products and IP into its portfolio, further expanding its offerings in digital printing for high-performance applications.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
From DuPont to Qnity: A Bold Move in Electronics Materials
05/14/2025 | Marcy LaRont, I-Connect007DuPont has announced the intended spinoff of a public independent electronics company, Qnity, which will serve as a solutions provider to the semiconductor and electronics industries to enhance competitiveness and innovation in advanced computing, smart technologies, and connectivity. In this interview, Jon Kemp, Qnity CEO-elect and current president of DuPont’s Electronics business, shares his insights on the strategic separation from DuPont.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.