Bone Growth Inspired ‘Microrobots’ Can Create Own Bone
January 18, 2022 | Linköping UniversityEstimated reading time: 3 minutes
Inspired by the growth of bones in the skeleton, researchers at the universities of Linköping in Sweden and Okayama in Japan have developed a combination of materials that can morph into various shapes before hardening. The material is initially soft, but later hardens through a bone development process that uses the same materials found in the skeleton.
When we are born, we have gaps in our skulls that are covered by pieces of soft connective tissue called fontanelles. It is thanks to fontanelles that our skulls can be deformed during birth and pass successfully through the birth canal. Post-birth, the fontanelle tissue gradually changes to hard bone. Now, researchers have combined materials that together resemble this natural process.
“We want to use this for applications where materials need to have different properties at different points in time. Firstly, the material is soft and flexible, and it is then locked into place when it hardens. This material could be used in, for example, complicated bone fractures. It could also be used in microrobots – these soft microrobots could be injected into the body through a thin syringe, and then they would unfold and develop their own rigid bones”, says Edwin Jager, associate professor at the Department of Physics, Chemistry and Biology (IFM) at Linköping University.
The idea was hatched during a research visit in Japan when materials scientist Edwin Jager met Hiroshi Kamioka and Emilio Hara, who conduct research into bones. The Japanese researchers had discovered a kind of biomolecule that could stimulate bone growth under a short period of time. Would it be possible to combine this biomolecule with Jager’s materials research, to develop new materials with variable stiffness?A close-up of the combination of materials.
The black material is an electroactive polymer, the volume of which changes when the researchers apply a low voltage, which makes this simple “microrobot” bend. On the other side of the material, you can see the gel to which the researchers have attached biomolecules that allow the soft gel material to harden like a bone.
In the study that followed, published in Advanced Materials, the researchers constructed a kind of simple “microrobot”, one which can assume different shapes and change stiffness. The researchers began with a gel material called alginate. On one side of the gel, a polymer material is grown. This material is electroactive, and it changes its volume when a low voltage is applied, causing the microrobot to bend in a specified direction. On the other side of the gel, the researchers attached biomolecules that allow the soft gel material to harden. These biomolecules are extracted from the cell membrane of a kind of cell that is important for bone development. When the material is immersed in a cell culture medium – an environment that resembles the body and contains calcium and phosphor – the biomolecules make the gel mineralise and harden like bone.
One potential application of interest to the researchers is bone healing. The idea is that the soft material, powered by the electroactive polymer, will be able to manoeuvre itself into spaces in complicated bone fractures and expand. When the material has then hardened, it can form the foundation for the construction of new bone. In their study, the researchers demonstrate that the material can wrap itself around chicken bones, and the artificial bone that subsequently develops grows together with the chicken bone.
By making patterns in the gel, the researchers can determine how the simple microrobot will bend when voltage is applied. Perpendicular lines on the surface of the material make the robot bend in a semicircle, while diagonal lines make it bend like a corkscrew.Three researchers in the lab.
“By controlling how the material turns, we can make the microrobot move in different ways, and also affect how the material unfurls in broken bones. We can embed these movements into the material’s structure, making complex programmes for steering these robots unnecessary”, says Edwin Jager.
In order to learn more about the biocompatibility of this combination of materials, the researchers are now looking further into how its properties work together with living cells.
The research was carried out with financial support from organisations including the Japanese Society for the Promotion of Science (JSPS) Bridge Fellowship program and KAKENHI, the Swedish Research Council, Promobilia and STINT (Swedish Foundation for International Cooperation in Research and Higher Education).
Translation by Benjamin Davies.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
The Impact of the AI Boom on PCB and Raw Materials Supply Chains
11/13/2025 | Mark Goodwin, Ventec International GroupThe PCB industry is entering a period of unprecedented structural change, driven by the demands of artificial intelligence and advanced computing. What was once a cyclical market has become a capacity race. It’s one that rewards foresight, collaboration, and strategic supply partnerships. Understanding these dynamics is essential for maintaining stability and growth across all market segments. This report, created by Ventec International Group, provides a clear view of how AI-driven demand is reshaping the PCB materials landscape and what actions are required to secure long-term supply.
UHDI Fundamentals: An Overview of UHDI Substrate Materials and Vias
11/13/2025 | Anaya Vardya, American Standard CircuitsThe rapid proliferation of 5G/6G communications, Internet of Things (IoT), high-performance computing (HPC), AI, and medical electronics has driven the need for increasingly compact, high-performance circuit packaging. UHDI, defined by feature sizes well below traditional HDI, addresses these demands by enabling ultra-fine lines, dense via interconnects, and embedded passive functionality. Understanding the materials and layering strategies in UHDI is essential for advancing both manufacturing and application design
MacDermid Alpha Electronics Solutions to Feature an Integrated Materials Platform Engineered for Long-Term Reliability at Productronica
11/12/2025 | MacDermid Alpha Electronics SolutionsEvery advancement in electronics raises expectations for enhanced performance and environmental stewardship. Meeting these challenges demands materials engineered for reliability and developed to support sustainable manufacturing. Industry momentum across connected devices, high-reliability automotive electronics, and rapidly increasing compute density is elevating the role of materials selection as a core driver of long-term system performance.
Real Time with... SMTAI 2025: Enhancing Device Reliability With Innovative Materials from MacDermid Alpha Electronics Solutions
11/10/2025 | Real Time with...SMTAIMarcy LaRont speaks with Anna Lifton, MacDermid Alpha Electronics Solutions, who discusses the significance of reliability in devices through advanced materials. Anna highlights MacDermid Alpha's foray into polymer chemistry, showcasing new UV curing materials that address electrochemical reliability and thermal cycling challenges. The conversation also covers the difficulties hardware manufacturers encounter, particularly in thermal management and environmental compatibility.
SEMI Foundation Honors Applied Materials at SEMICON West with 2025 Excellence in Achievement Award for Talent Development
11/04/2025 | SEMIThe SEMI Foundation announced it recognized Applied Materials, Inc. with the Excellence in Achievement Award at SEMICON West 2025 in Phoenix, Arizona, honoring the company’s outstanding leadership and collaboration in building the next generation of semiconductor talent.