Additive Design: Same Steps, Different Order
April 12, 2022 | I-Connect007 Editorial TeamEstimated reading time: 2 minutes

We recently spoke with Dave Torp, CEO of Winonics, about the company’s additive and semi-additive processes and what PCB designers need to know if they’re considering designing boards with these new technologies. As Dave explains, additive design is not much different from traditional design, but the steps in the design cycle are out of order, and additive designers must communicate with their fabricators because so much of the new processes are still proprietary.
Andy Shaughnessy: Dave, give us some background on Winonics and your focus on additive and semi-additive processes.
Dave Torp: Additive Circuits Technologies is the parent company, which owns two companies. One is Winonics, a rigid circuit board company. The other is a flexible circuit board company called Bench 2 Bench. Winonics is ISO-9001, AS 9100, and ITAR-registered. We have a 52,000 square-foot facility in Brea, California. Bench 2 Bench has a 25,000 square-foot facility, located about 10 minutes away in Fullerton.
From the holistic view, our focus is in the high-reliability electronics market. We focus on the aerospace, defense, and the medical device electronics. Our competitive anchor is providing great service. We don’t really put too many boundaries on what we do. Simply put, we’re a technology realization company.
We have process patents for applying circuitry and metallization in an additive technology. We also have some trade secrets that we keep behind the vest with respect to our manufacturing operations. What the additive technology enables is ultra-fine features and ultra-high definition. The enabling technology provides metallization in very high-density configurations to make high-density interconnects. We have demonstrated the technology down to 15-micron lines and spaces, which was, at the time, the limit of the laser technology that we had.
As the LDI technology becomes more precise, we’ll have the ability to go further down that pathway. So, we look to being capable of doing 8-micron lines and spaces and below by 2023.
The real drivers for the technology are miniaturization and the need for greater speed. If you look at some of the frequencies that are required to enable a communication, you are getting up into the 5G-plus mindset. The layer counts within the circuit boards aren’t increasing, but the number of interconnects between those layers is increasing. You can have a lot of fun with respect to the layers that are being interconnected and how the microvias are being stacked and racked upon each other. Sometimes you stack them right on top of each other. Other times, you stagger them out a little bit, depending on the signal integrity that you want.
With respect to the additive processes, first we have semi-additive technology, which is a fairly new process. In a lot of cases, you take the ultra-thin copper foils, or the plating applied to the substrate. You hit it with photo-sensitive materials, etch away that ultra-thin part of the copper, and then start to plate back up. That’s the semi-additive process.
The fully additive process is the newest technology, where you print the pattern that you want on the substrate without copper foil, using a palladium or platinum-based chemistry, and expose it with a laser or a UV source of radiation. Then you allow the electroless copper plating to be deposited, followed by electrolytic plating
This allows us to create ultra-fine traces down to sub-15-micron type technology. We’re excited about the opportunities, especially in the in-betweens, where you’re using hybrid interposer layers to try to connect this heterogeneous integrated package together.
To read this entire conversation, which appeared in the April 2022 issue of Design007 Magazine, click here.
Suggested Items
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.