NASA’s Roman Mission Completes Key Optical Components
December 6, 2022 | NASAEstimated reading time: 1 minute

Engineers at Ball Aerospace, one of the industrial partners for NASA’s Nancy Grace Roman Space Telescope, have installed and aligned the element wheel assembly (pictured below) into the telescope’s Wide Field Instrument. The assembly contains eight science filters, two dispersive elements (a grism and prism) and a “blank” element (used for internal calibration) that will help scientists solve some of the most profound mysteries in astrophysics when Roman launches by May 2027.
CAPTION: The Nancy Grace Roman Space Telescope, formerly the Wide Field InfraRed Survey Telescope (WFIRST), is a NASA observatory designed to settle essential questions in the areas of dark energy, exoplanets and infrared astrophysics.
After light is reflected and focused by Roman’s primary and secondary mirrors, it will pass through the element wheel. The focused and filtered light will then reach a large detector array, where an image is created. Depending on what the researchers are looking for, the science filters will allow astronomers to select specific wavelengths of light for their observations. The grism and prism are tools for spectroscopy, designed to spread out the light from cosmic objects into different colors. These rainbow-like measurements, called spectra, contain unique signatures about the sources that offer clues about their nature. For example, astronomers will be able to measure how thousands of entire galaxies are moving through space, which will help them see how fast the universe has expanded at different points in time. Doing so can help pin down the nature of dark energy – the mysterious cosmic pressure that’s speeding up the universe’s expansion.
The grism and prism were fabricated and tested by Optimax, Jenoptik, and NASA’s Goddard Space Flight Center to ensure they meet Roman’s stringent requirements. The team simulated space-like conditions in a cryo-vacuum vessel, which lowered the temperature to about minus 190 degrees Fahrenheit (minus 123 degrees Celsius). Since most materials expand when heated and compress when cooled, engineers had to confirm that the optics will work as planned at Roman’s super-cold operating temperature. Both the grism and prism passed, with test images showing minimal distortion. Astronomers will use these components to explore some of the biggest mysteries in the universe.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Nortech Systems Achieves Enhanced Fiber Optic Performance
09/16/2025 | Nortech SystemsNortech Systems Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced significant advancements in its fiber optic capabilities.
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.