Bending 2D Nanomaterial Could 'Switch On’ Future Technologies
March 15, 2023 | Rice UniversityEstimated reading time: 2 minutes

Rice University materials scientist Boris Yakobson and collaborators uncovered a property of ferroelectric 2D materials that could be exploited as a feature in future devices.
Because they bend in response to an electrical stimulus, single-layer ferroelectric materials can be controlled to act as a nanoscale switch or even a motor, according to the study published in ACS Nano.
Single-layer or 2D materials are typically made up of a single layer of atoms, meaning they are only a few nanometers thick. They have received significant attention in recent years due to their physical, electrical, chemical and optical properties, which makes them useful in applications ranging from consumer electronics to medical and industrial technologies.
“2D materials are very thin and very flexible,” Yakobson said. “In single-layer ferroelectrics, this produces an unexpected spontaneous, active bending behavior.”
“The novelty we found in this study is that there is a connection or coupling between the ferroelectric state and the bending or flexing of the material. This work combines the discovery or prediction of a fundamental property of a class of 2D materials with a practical application angle.”
Ferroelectrics are materials made up of negative and positive ions that can shift to produce spontaneous polarization, meaning the ions segregate based on their electrical charge.
“The interesting thing is that the atoms are not identical,” explains Jun-Jie Zhang, a Rice postdoctoral research associate and lead author on the study. “Some of them are larger, and some are smaller, so the layer symmetry is broken.”
Polarization drives the larger atoms to one side of the 2D-material layer and the smaller atoms to the other side. This asymmetrical distribution of the atoms or ions causes the material surface to bend in ferroelectric state.
“So instead of remaining flat, in ferroelectric state the material will bend,” Yakobson said. “If you switch the polarization – and you can switch it by applying electrical voltage – you can control the direction in which it will bend. This controllable behavior means you have an actuator.
“An actuator is any device that translates a signal – in many cases an electrical signal, but it can be a different kind of signal – into mechanical displacement or, in other words, movement or work.”
The study looked at 2D indium phosphide (InP) as a representative of the class of ferroelectrics for which it predicts this property.
“This new property or flexing behavior has to be tested in a laboratory for specific substances,” Yakobson said. “Its most likely use will be as a type of switch. This behavior is very fast, very sensitive, which means that with a very tiny local signal you can maybe switch on a turbine or electrical engine, or control adaptive-optics telescopes’ mirrors. That’s basically the essence of these actuators.
“When you drive your car, you have a lot of knobs and switches and it makes everything really easy. You don’t have to crank open your car window anymore, you can just turn on a switch.”
Yakobson is Rice’s Karl F. Hasselmann Professor of Materials Science and NanoEngineering. Taif University chemist Tariq Altalhi is a co-author on the study.
Suggested Items
Standard of Excellence: The Perfect PCB Fab—A Vision for Five Years Ahead
11/29/2023 | Anaya Vardya -- Column: Standard of ExcellenceTo sustain a standard of excellence, it’s equally important to look at both what we’re doing today as well as what we’ll do in the future. In other words, plan ahead. In that spirit, I thought it would be prudent to peek into the future and talk about what a printed circuit board fabrication facility with a “standard of excellence” will look like five years from now.
Graphene in Consumer Goods: Revolution or Evolution, Asks IDTechEx
11/27/2023 | PRNewswireSince its isolation in 2004, graphene has received widespread attention as a 'wonder' material, with the reported potential to enable a whole host of next-generation technologies, some of which would not be out of place in the latest sci-fi blockbuster.
Chung-Ang University Scientist Develops New Antiferromagnetic Superconducting Spin Valves
11/24/2023 | PRNewswireSuperconductors are materials that offer no resistance to electrical current flowing through them. Combining their study with spintronics, which deals with the intrinsic spin of electrons and their use in electronics, has paved the way for the new field of superconducting spintronics.
Machine Learning Techniques Improve X-ray Materials Analysis
11/21/2023 | ACN NewswireResearchers of RIKEN at Japan’s state-of-the-art synchrotron radiation facility, SPring-8, and their collaborators, have developed a faster and simpler way to carry out segmentation analysis, a vital process in materials science.
SHENMAO Holds Celebration for 50 Years of Quality Solder Innovation
11/17/2023 | SHENMAOSHENMAO Technology is proud to commemorate its 50th anniversary. Founded in 1973, SHENMAO has witnessed the evolution of Taiwan’s electronics industry, playing a pivotal role in shaping the landscape of solder materials and setting new industry stanards.