Pusan National University Researchers Develop Way to Tune Energy Levels of Semimetals
March 28, 2023 | PRNewswireEstimated reading time: 2 minutes

Type-II Dirac semimetals are quantum materials with unique energy level structures, such as a bulk Dirac point (BDP). However, these semimetals are unsuitable for real-life applications because their BDP is far off the "Fermi energy level." Nickel ditelluride (NiTe2), a newly reported type-II Dirac semimetal has a BDP slightly above the Fermi level. Now, researchers have substituted tellurium with selenium in NiTe2 to alter the strength of its spin-orbit coupling and further tune its BDP.
Quantum materials, such as topological semimetals, are materials whose electronic properties are linked to exotic quantum effects. While their interior is a semimetal (e metal with properties between a conductor and semiconductor), the surface behaves like a conductor. This unique electronic behavior arises due to the topology (special geometric properties) of the energy levels occupied by the electrons on the surface of these materials. Specifically, the energy levels closest to the Fermi level (EF)—the highest energy level that an electron can occupy at 0K—form up and down Dirac cones whose tips touch at Dirac points.
Materials with tilted Dirac cones are known as type-II Dirac topological semimetals and have potential applications in topological quantum computing. However, there is a bottleneck. Quantum computers need type-II Dirac semimetals whose bulk Dirac point (BDP) is close to the EF—a rarity. Scientists recently reported that nickel ditelluride (NiTe2) has a BDP slightly above the EF, making it an ideal candidate for quantum computing.
Recently, a research team, led by Associate Professor Jaekwang Lee of Pusan National University, developed a novel technique for further tuning the BDP around the EF in NiTe2. Their work was made available online on 15 July 2022 and published in Volume 16, Issue 7 of the ACS Nano journal on 26 July 2022.
Using density functional theory calculations, the researchers show that substituting tellurium (Te) with selenium (Se) reduces the strength of the spin-orbit coupling (SOC)—the interaction between the electron's spin and its orbital motion around the atomic nucleus—in NiTe2. This shifts the BDP while preserving the type-II Dirac band.
"DFT calculations shows that the SOC strength and the BDP are almost linearly tunable. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy confirm that the BDP in the NiTe2?xSex alloy moves from +0.1 eV (NiTe2) to ?0.3 eV (NiTeSe) about the EF. Further, the BDP is at the exact EF for NiTe1.4Se0.6," highlights Prof. Lee.
Hence, NiTe2?xSex alloys offer a versatile platform for facilitating numerous technologies based on topological effects, including next-generation electronics, spintronics devices, efficient electrocatalysis, topological superconductivity, and quantum computers.
In conclusion, Prof. Lee discusses the longer-term implications of this work. "It provides insights into SOC control to tailor type-II Dirac bands, and will open up new avenues for exploring and developing materials with unconventional electronic properties."
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.