NASA’s New Detectors Could Improve Views of Gamma-Ray Events
June 7, 2023 | NASAEstimated reading time: 2 minutes

Using technology similar to that found in smartphone cameras, NASA scientists are developing upgraded sensors to reveal more details about black hole outbursts and exploding stars — all while being less power hungry and easier to mass produce than detectors used today.
“When you think about black holes actively shredding stars, or neutron stars exploding and creating really high-energy bursts of light, you are looking at the most extreme events in the universe,” said research astrophysicist Dr. Regina Caputo. “To observe these events, you need to look at the highest-energy form of light: gamma rays.”
Caputo leads an instrument-development effort called AstroPix at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The silicon pixel sensors in AstroPix — still in development and testing — are reminiscent of the semiconductor sensors that allow smartphone cameras to be so small.
“Gamma rays are notoriously tricky to measure because of the way that the incoming particle interacts with your detector,” said Dr. Amanda Steinhebel, a NASA Postdoctoral Program fellow working with Caputo.
Gamma rays are wavelengths of light more energetic than ultraviolet and X rays, and their photons act more like particles than waves. “Instead of just being absorbed by a sensor like visible light,” Steinhebel said, “gamma rays bounce all around.”
NASA’s Fermi Gamma-ray Space Telescope, which has studied the gamma-ray sky since 2008, solved the “bounce” problem in its main instrument by using towers of strip-shaped sensors. This table-sized cube, Fermi’s Large Area Telescope, was itself groundbreaking technology when the mission launched.
Each strip maps a gamma-ray strike in a single-dimension, while layers of strips oriented perpendicular to each other record the second dimension. Gamma rays generate a cascade of energetic strikes through multiple layers, providing a map pointing back to the source.
About the size of a golf bag, a space telescope instrument using AstroPix sensors would require half as many layers as the Fermi strip detector technology, Caputo said.
In a practical application like this sounding rocket test instrument design, a gamma-ray observatory would use multiple layers of Astropix sensors, which could then track a 3-dimensional particle trajectory through a series of two-dimensional, pixelated detectors.
“It’s easier to tell exactly where particles interact,” Steinhebel said, “because you just identify the point in the grid that it interacted with. Then you use multiple layers to literally trace back the paths that particles took through it.”
AstroPix could record lower-energy gamma rays than current technology, Steinhebel explained, because these photons tend to get lost filtering through the multiple layers of a strip detector. Capturing them would provide more information about what happens during short-lived, energetic events. “These low-energy gamma rays are most common during peak burst brightness,” she explained.
The pixel detectors also consume less electricity to operate, Caputo said, a major upside for future missions planning out their power usage.
Pixelated silicon detectors have been proven in particle accelerator experiments, she said, and their common use and mass production for cell phones and digital cameras make them easier and less expensive to obtain.
Developing different prototypes over multiple years and seeing AstroPix create accurate plots of gamma-ray light has been exhilarating and extremely satisfying, Steinhebel said.
While the team continues to work on developing and improving their technology, Caputo said the next step would be to launch the technology on a short sounding rocket flight for further testing above Earth’s atmosphere.
They hope to benefit a future gamma-ray mission intended to further the study of high-energy universe events.
“We can do such cool science with this,” Caputo said. “I just want to see that happen.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Coming Soon: The Advanced Electronics Packaging Digest
08/27/2025 | Marcy LaRont, I-Connect007The upcoming Advanced Electronics Packaging Digest is a curated, condensed monthly publication designed to keep you informed and engaged with the fast-moving world of advanced electronics packaging (AEP). In our inaugural September issue, we will begin at the foundation with an in-depth interview featuring Matt Kelly, CTO of the Global Electronics Association. Kelly and his Technology Solutions Team approach advanced packaging from a holistic systems perspective.
Nordson Reports Q3 Fiscal 2025 Results and Updates Full Year Guidance
08/21/2025 | BUSINESS WIRENordson Corporation reported results for the fiscal third quarter ended July 31, 2025. Sales were $742 million compared to the prior year’s third quarter sales of $662 million.
Haylo Labs Acquires Plessey Semiconductors
08/20/2025 | Haylo LabsHaylo Labs has acquired Plessey Semiconductors, the UK’s leading innovator in microLED display technology.
SoftBank Group and Intel Corporation Sign $2B Investment Agreement
08/19/2025 | Intel CorporationSoftBank Group Corp. and Intel Corporation today announced their signing of a definitive securities purchase agreement, under which SoftBank will make a $2 billion investment in Intel common stock.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.