Latent Short Circuit Failure in High-Rel PCBs due to Cleanliness of PCB Processes and Base Materials
August 11, 2015 | Stan HeltzelEstimated reading time: 2 minutes
Latent short circuit failures have been observed during testing of PCBs for power distribution of spacecraft of the European Space Agency. Root cause analysis indicates that foreign fibers may have contaminated the PCB laminate. These fibers can provide a pathway for electromigration if they bridge the clearance between nets of different potential in the presence of humidity attracted by the hygroscopic laminate resin. PCB manufacturers report poor yield caused by contamination embedded in laminate. Inspections show that fiber contamination is present on prepreg and etched innerlayers. Further fiber contamination may be attracted in the manufacturing environment due to static charging. The requirements for cleanliness that are specified for final PCBs are orders of magnitude more stringent than
those specified for base materials. This paper describes inspections performed on base materials, manufacturing processes and final PCBs. It describes test methods that detect reduced insulation caused by contamination and electromigration. Moreover, a proposal is presented specifying tightened requirements for a new class of base materials for the manufacture of high-reliability PCBs.
I. Introduction
Latent short circuit failures have been observed in PCBs during testing of power distribution units of spacecraft for the European Space Agency (ESA). Root cause analysis has been conducted under review of non-conformance review boards (NRB). Printed circuit board assemblies failed after prolonged functional testing in ambient laboratory environment or after thermal vacuum cycles. Due to the large amount of damage caused by the electrical overstress, it was not possible to obtain direct evidence of the failure. However, a working hypothesis has been developed indicating that fiber contamination may have caused a latent short circuit. This hypothesis was further substantiated by reports on contamination issues in base materials and by a test method that demonstrated the breach of insulation due to fiber contamination.
At the time of the observed failures at equipment level, PCB manufacturers reported poor cleanliness levels of base laminate materials, causing poor yield. It is not possible to screen in an efficient manner for contamination in copper-clad laminate, since visual inspection requires stripping of the copper. Several inspection methods show the lack of cleanliness of base materials, which is specified in IPC4101[8]. This paper identifies a major gap between the requirements specified on base materials and the requirements on manufactured PCBs and presents a proposal for a new class of cleaner base materials for the manufacture of high-rel PCBs.
Editor's Note: This article originally appeared in the August 2015 issue of The PCB Magazine.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.