Highly Flexible, Wearable Tactile Sensor for Robotics, Electronics and Healthcare Applications
September 24, 2015 | NUSEstimated reading time: 2 minutes
A team of scientists from the National University of Singapore (NUS) Faculty of Engineering has developed a wearable liquid-based microfluidic tactile sensor that is small, thin, highly flexible and durable. Simple and cost-effective to produce, this novel device is very suitable for applications such as soft robotics, wearable consumer electronics, smart medical prosthetic devices, as well as real-time healthcare monitoring.
Tactile sensors are data acquisition devices that detect and measure a diversity of properties arising from physical interaction and translate the information acquired to be analysed by an interconnected intelligent system. Conventional tactile sensors that are available today are typically rigid and in solid-state form, restricting various natural body movements when used and may also be subjected to plastic deformation and failure when pressure is exerted, resulting in compromises in conformability, durability and overall robustness.
Addressing the limitations of existing tactile sensors, a team of researchers led by Professor Lim Chwee Teck from NUS’ Department of Biomedical Engineering achieves a significant technological breakthrough by adopting a liquid-based pressure sensing method in the design of such sensors.
Novel Liquid-Based Pressure Sensing Element
The newly developed microfluidic tactile sensor is fabricated on a flexible substrate like silicone rubber, and uses non-corrosive, non-toxic 2D nanomaterial suspension in liquid form, such as graphene oxide, as the pressure sensing element to recognise force-induced changes.
The NUS team has put the device through rigorous tests and also subjected it to various strenuous deformations, such as pressing, bending or stretching, to validate the robustness and versatility of its invention. In fact, despite having placed the device under extreme abusive mechanical force, such as running a car tyre over it, the electrical output was highly uniformed and there was no damage to the functionality of the device.
From Idea to Market
The team’s invention will further advance the applications of tactile sensors, which are already increasingly utilised for monitoring critical parameters in biomedical applications, especially for those that may come in contact with human skin or where human movement is highly versatile.
“This liquid-based microfluidic tactile sensor, which is the first of its kind, addresses an existing gap in the market. Being thin and flexible, the sensor gives a better fit when monitoring natural body movements. Its small size, durability and ease of production further differentiate this novel device from conventional tactile sensors. With the rapid advancement of healthcare and biomedical technologies as well as consumer electronics, we are optimistic about new possibilities to commercialise our invention,” said Prof Lim.
The NUS team has already filed a patent for its creation and is also keen to explore licensing partnerships in commercial development. Earlier this year, it participated in InnovFest unBound, Asia’s premier technology transfer event organised by NUS Enterprise aimed at showcasing Asian innovation to a global audience and taking technology out to the market.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Kevin Barrett Joins Technica USA as PCB Business Development and Account Manager
11/03/2025 | Technica USATechnica USA is proud to announce that Kevin Barrett has rejoined Team Technica as PCB Business Development /Account Manager.
The Training Connection Continues to Grow with Addition of Veteran IPC Trainer Bill Graver
10/30/2025 | The Training Connection LLCThe Training Connection, LLC (TTC-LLC), a premier provider of test engineering and development training, is proud to announce the addition of Bill Graver to its growing team of industry experts. A respected professional with more than 35 years in electronics manufacturing, Bill joins as an IPC Master Trainer, bringing a wealth of hands-on experience in PCB testing, failure analysis, and process improvement.
Ruben Zambrano Joins Technica USA as PCB Equipment Service Technician
10/21/2025 | Technica USATechnica USA is proud to announce that Ruben Zambrano has rejoined Team Technica as PCB Equipment Service Technician.
ASC Sunstone Circuits Adds New Options to OneQuote While Maintaining Real-Time Pricing on Core PCB Features
10/16/2025 | ASC Sunstone CircuitsASC Sunstone Circuits, a leading U.S. PCB manufacturer, today announced a significant expansion of its OneQuote online quoting tool, giving design engineers more control over complex PCB configurations — making it easier for the quote team to quickly clarify and verify specifications, reducing delays from manual quote reviews.
Fresh PCB Concepts: Investing in Tomorrow's PCB Experts Today
09/24/2025 | Team NCAB -- Column: Fresh PCB ConceptsPeople often describe the PCB industry as one of the most critical yet invisible foundations of modern electronics. Every project needs a PCB, but few college programs or engineering curricula cover the complexity of board design, stackups, or manufacturability. That means the responsibility for developing the next generation of PCB experts falls on the industry itself.