New Acoustic Technique Reveals Structural Information in Nanoscale Materials
December 29, 2015 | Georgia Institute of TechnologyEstimated reading time: 4 minutes
Understanding where and how phase transitions occur is critical to developing new generations of the materials used in high-performance batteries, sensors, energy-harvesting devices, medical diagnostic equipment and other applications. But until now there was no good way to study and simultaneously map these phenomena at the relevant length scales.
Now, researchers at the Georgia Institute of Technology and Oak Ridge National Laboratory (ORNL) have developed a new nondestructive technique for investigating these material changes by examining the acoustic response at the nanoscale. Information obtained from this technique - which uses electrically-conductive atomic force microscope (AFM) probes - could guide efforts to design materials with enhanced properties at small size scales.
The approach has been used in ferroelectric materials, but could also have applications in ferroelastics, solid protonic acids and materials known as relaxors. Sponsored by the National Science Foundation and the Department of Energy's Office of Science, the research was reported December 15 in the journal Advanced Functional Materials.
"We have developed a new characterization technique that allows us to study changes in the crystalline structure and changes in materials behavior at substantially smaller length scales with a relatively simple approach," said Nazanin Bassiri-Gharb, an associate professor in Georgia Tech's Woodruff School of Mechanical Engineering. "Knowing where these phase transitions happen and at which length scales can help us design next-generation materials."
In ferroelectric materials such as PZT (lead zirconate titanate), phase transitions can occur at the boundaries between one crystal type and another, under external stimuli. Properties such as the piezoelectric and dielectric effects can be amplified at the boundaries, which are caused by the multi-element "confused chemistry" of the materials. Determining when these transitions occur can be done in bulk materials using various techniques, and at the smallest scales using an electron microscope.
Page 1 of 2
Suggested Items
SolderKing Celebrates a Year of Expansion, Innovation, and Sustainability Achievements
12/09/2024 | SolderKing Assembly Materials Ltd,SolderKing Assembly Materials Ltd, a leading UK-based manufacturer of soldering materials and consumables, has wrapped up 2024 with a series of milestones that reflect its ongoing growth and commitment to innovation.
EpoxySet to Exhibit at MD&M West
12/05/2024 | epoxySetEpoxySet Inc. will be exhibiting at MD&M West on February 4-6, 2025 in the Anaheim Convention Center, booth 617.
iSQUARED Expands Specialized Material Offerings Validated for Stratasys 3D Printers
12/03/2024 | BUSINESS WIREiSQUARED, a wholly-owned subsidiary of Stratasys, announced today an expansion of its portfolio of materials validated for use in Stratasys 3D printers, alongside the launch of a marketplace for pre-owned Stratasys machines.
The ICAPE Group Invests in Jiva Materials to Drive Eco-Friendly PCB Innovation in Europe
11/27/2024 | BUSINESS WIREICAPE Group, a global technology distributor of printed circuit boards (“PCB”) and custom-made electromechanical parts, today announced it will be acquiring a minority shareholding in Jiva Materials Ltd, a UK-based innovator and the developer of Soluboard® - the world’s first fully biodegradable PCB substrate.
CHIPS for America Announces Up to $300M in Funding to Boost U.S. Semiconductor Packaging
11/21/2024 | U.S. Chamber of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce (DOC) is entering negotiations to invest up to $300 million in advanced packaging research projects in Georgia, California, and Arizona to accelerate the development of cutting-edge technologies essential to the semiconductor industry.